## Contents

Introduction

1. Existing Conditions
A. Existing Walking \& Bicycling Conditions in the Plan Area
i. Qualitative Analysis - Walkshop Results
ii. Pedestrian Level of Comfort Analysis
iii. Pedestrian Intersection Counts \& Delay Analysis
iv. Existing and Planned Bicycling Conditions
v. Existing Transit Use
B. Vision Zero Analysis
i. Speed Analysis
ii. Crash Analysis
iii. Prioritized List of Vision Zero Improvements
iv. Synchro Modeling Results for Vision Zero Improvements
2. Consolidated Information on Corridor Cities Transitway and MD 355 BRT
A. Corridor Cities Transitway
B. MD 355 BRT
3. Vehicle Modeling
A. Summary Table of 15 Scenarios and Assumptions
B. Outputs by Study Intersection, Scenarios A-O
C. Discussion of Findings and Trade-Offs
4. Interchange Feasibility Analysis
A. Interchange Feasibility Memo
5. Non-Auto Driver Mode Share (NADMS) Goals
6. Infrastructure Priority Plan to Achieve (NADMS) Goals
7. Complete Streets Guide Typologies
8. Addendum: Updated Pedestrian Level of Comfort Map \& Connectivity Analysis

## Introduction

This "Transportation Appendix" provides a comprehensive resource related to the transportation element of the Shady Grove Minor Master Plan Amendment (Plan). The appendix is divided into seven sections based on topic; however, due to the nature of the content there is some overlap across sections. Where possible, content is intentionally not repeated to avoid redundancy.

The first section centers on existing conditions and includes information about walking and biking conditions, plan area speeds and crashes, the Department's beta-testing of the Pedestrian Level of Comfort, and an analysis of pedestrian delay (also called "pedestrian area holding time"). This work culminated in a list of prioritized Vision Zero improvements, which is provided in a tabular format. Many of the listed Vision Zero improvements that impact vehicle capacity were modeled in Synchro using existing volumes to understand the magnitude of likely vehicular capacity impacts should the given safety improvements be implemented today.

The second section focuses on the Corridor Cities Transitway and the Maryland 355 Bus Rapid Transit Line. This section provides information about the projects' histories through the time of this writing. The Plan document proposes sections for streets that—at the time of this writing-are anticipated to provide BRT service.

The third section functions as a resource detailing the fifteen different vehicle capacity modeling runs completed to support the Plan. The Plan's extensive modeling effort included Synchro and VISSIM analyses. The VISSIM analyses were completed for intersections along streets assumed to provide BRT service and include various alignments, including curb running, median running, and peak-hour median running scenarios.

The 2006 Shady Grove Sector Plan added three interchanges to the Master Plan of Highways and Transitways, including a grade-separated interchange at MD 355 and Gude Drive, a partial interchange at Crabbs Branch Way and Metro Access Road, and an interchange at I-370 and Metro Access Road to support access to the Intercounty Connector (MD 200). The latter of these interchanges was constructed as a component of the Intercounty Connector project. Section four discusses the former two interchange recommendations, focusing on why the Plan amendment has moved away from these previous recommendations. This section includes a memo documenting the work of a project consultant that studied various interchange options at MD 355 and Gude Drive. This memo assesses operational improvements and impacts and ultimately concludes that an interchange may not be the best solution to support mobility along the MD 355 corridor due to upstream and downstream impacts.

Section five and six of the appendix focus on the Plan's Non-Auto Driver Mode Share (NADMS) Goals, including the modeling done to support the Plan's goals as well as an infrastructure prioritization scheme to achieve such goals.

The last section suggests classification for street types within the Plan area, employing the draft Complete Streets Guidelines typologies. Beginning in 2018, The Planning Department began working with the Montgomery County Department of Transportation on new street classifications. The purpose of the Design Guide is to 1) articulate a consistent, countywide vision for street design; 2) consolidate street design standards and policies into one document; 3) address best practices in fire access, stormwater management, and the use of alternative materials; and 4) increase flexibility for street
design while maintaining standard and continuity of facilities. The proposed street typologies are for future consideration following the approval and adoption of the new anticipated Guidelines.

## 1. Existing Conditions

Analysis of the existing bicycling and pedestrian conditions in the Plan area were taken through the lens of Vision Zero. Vision Zero is a strategy to eliminate all travel-related fatalities and severe injuries on roadways while increasing safe, healthy, equitable mobility for all roadway users. First implemented in Sweden in the 1990s, Vision Zero has been adopted by jurisdictions across the country including the Washington DC Metropolitan Region. In 2016, Montgomery County committed to eliminate all traffic fatalities and severe injuries by 2030. In 2017, the County Executive released an initial two-year action plan of activities to advance the County toward Vision Zero. Upon completion of the two-year action plan, the County will advance a ten-year action plan to achieve Vision Zero by 2030. The main principles of Vision Zero follow below:

- All transportation-related deaths and injuries are preventable;
- Street designers must assume that all users-drivers, pedestrians and bicyclists-make imperfect choices;
- Street designers must emphasize the prevention of severe and fatal crashes, which includes an acknowledgement of user vulnerability; and
- Reducing crash severity is more important than reducing crash frequency.

The principles of Vision Zero are relevant to all roadway users, but because non-motorists are the most vulnerable users of a roadway network, this planning effort specifically examined what improvements could be made to improve safety for pedestrians and bicyclists. Because the County has adopted a Vision Zero policy and 2030 commitment, the recommendations in Commission plans should advance the principles of the policy; however, the Commission is also required to adhere to the County's Subdivision Staging Policy (SSP), whose transportation policy components largely focus on automobile capacity. Meeting the delay thresholds set by the current SSP and subsequent Local Area Transportation Review Guidelines (LATR Guidelines, 2017) can result in large-footprint multilane intersections that are unsafe for pedestrians to cross. In cases where two Council-approved policies conflict, it is the responsibility of the project team to offer solutions to County decision makers that balance policy requirements and merits. For this effort, the Planning Department privileges the safety of pedestrians, bicyclists, and drivers over vehicular capacity and convenience.

## A. Existing Walking \& Bicycling Conditions in the Plan Area

The Plan Area includes several major pedestrian and micromobility generators, including the Washington Metropolitan Area Transportation Authority's (WMATA) Metrorail Station, local bus service stops, a school, and a daycare center. There are additional retail options along Frederick Road (MD 355 Corridor), within the Grove Shopping Center, and within the newly constructed Daley building. From a leisure perspective, the area also encompasses and borders multiple parks, including Blueberry Hill Local Park, Crabbs Branch Stream Valley Park, Mill Creek Stream Valley Park, Derwood Station Neighborhood Park, at the City of Rockville's Mattie J.T. Stepanek Park.

Consistent with mid-century suburban design, roads in the Plan Area were designed to facilitate automobile traffic and many pedestrian facilities lack safe and comfortable conditions. To assess accessibility for pedestrians, the Master Plan team employed qualitative field studies, including a "Walkshop," and a mixed-method GIS application referred to as the "Pedestrian Level of Comfort."

## i. Qualitative Analysis - "Walkshop"

A "walkshop" was conducted on June 3, 2019. This combined workshop-walk audit was attended by 25 individuals from the City of Gaithersburg, the City of Rockville, the Montgomery County Department of Transportation, the State Highway Administration, and the Montgomery County Planning Department. This purpose of the event was to generate discussion about the planning area's transportation conditions, primarily from the perspective of a non-motorist.

Attendees were separated into groups based on topical and geographical relevance and driven from the walkshop's home-base location at 16700 Crabbs Branch Way to the starting location of the three respective walking routes. These routes-and a fourth route along Shady Grove, which was not completed by the group based on interest—are shown in subsequent pages (Figures 1 through 4).

Comments about conditions in the plan area were recorded and are shown in Table 1 following the walking route maps. Some comments included in the table extend beyond the realm of pedestrian and bicycle conditions, but are included nonetheless. Table 1 indicates where each comment is addressed, either in the Plan or the Appendix.

Figure 1 - Walkshop Route 1


Figure 2 - Walkshop Route 2


Figure 3 - Walkshop Route 3


Figure 4 - Walkshop Route 4


Table 1 - Consolidated Walkshop Comments

| Walking Route | Location | Comment | Response/ <br> How Comment Could or Should Be Addressed |
| :---: | :---: | :---: | :---: |
| 1 | Crabbs Branch Way (within EYA \& Bus Depot Area) | Despite the 10 -foot lanes, the cartway still feels wide. Is this because the gutter pans are excluded from the measurement? Could the presence of unused parking or turn lanes also make the lanes feel wider? | Speed studies done in this location do confirm high speeds; the Vision Zero table in this Appendix recommends camera enforcement. |
| 1 | Crabbs Branch Way (between Gramercy and Redland) | Vehicles appear to be speeding-particularly those moving down grade extending from Shady Grove Road down to Redland Road. | Speed studies done in this location do confirm high speeds; the Vision Zero table in this Appendix recommends camera enforcement. |
| 1 | Crabbs Branch Way Bridges | Sidewalks are relatively narrow (with the vertical enclosures) and there's no buffer from traffic; Consider expanding the pedestrian/bicycle facilities with a cantilevered trail on both sides of the bridge; Consider making more direct access to the trails below the bridges. |  |
| 1 | Crabbs Branch Way | North of Redland Road, but south of Grammercy and the bridge, there is an unprotected crossing where the trail on the east side intersects with the sidewalk. People are likely crossing mid-block and they should be protected to make that crossing more predictable for motorists. | Improvements should be implemented through adjacent development on the eastern side of Crabbs Branch Way. |
| 1 | Crabbs Branch Way | South of Redland Road, consider a road diet and/or replacing the center turn lane (CTL) with a concrete median. | The Plan proposes a four-lane section with a vegetated median. |
| 1 | Redland Road \& Crabbs Branch Way | Pedestrian wait time and crossing distances are not ideal. | Planning Department staff concur and recommend a Leading Pedestrian Interval (LPI) in the Vision Zero table. Time is not addressed directly, but could be considered by MCDOT. |


| Walking Route | Location | Comment | Response/ How Comment Could or Should Be Addressed |
| :---: | :---: | :---: | :---: |
| 1 | Redland Road \& Crabbs Branch Way | People appear to make rolling "right-turn on red," from the south leg of Crabbs Branch Way onto EB Redland Road, and EB Redland onto SB Crabbs Branch Way. | The Vision Zero table in this appendix recommends additional right turn on red restrictions at this intersection. |
| 1 | Crabbs Branch Way (between Redland Road and Indianola Drive) | Because of the speeds on the roadway, cars do not appear to comply with the "stop for pedestrian" signage at designated mid-block crossings. | The cone of vision increases when speeds are reduced. The Vision Zero Table in this Appendix recommends camera enforcement. Additionally, a new section is recommended in the Plan. |
| 1 | Crabbs Branch Way (between Redland Road and Indianola Drive) | Crosswalks are missing over intersections at locations where there are townhomes. | Missing markings should be addressed through ongoing street maintenance programs by MCDOT. |
| 1 | Crabbs Branch Way \& Indianola Drive | Existing curb ramps are diagonal/apex ramps. Separate curb ramps should be provided for each direction of crossing. | ADA capital improvements should be addressed through ongoing street maintenance programs by MCDOT. |
| 1 | Crabbs Branch Way \& Indianola Drive | The pedestrian pushbuttons are not accessible because they are not audible. Additionally, there is only one button for each corner (i.e. buttons are not separated by the direction of crossing). | ADA capital improvements should be addressed through ongoing street maintenance programs by MCDOT. |
| 1 | Indianola (between Crabbs Branch Way and MD 355) | ROW is too wide for vehicular needs; a bicycle facility could be added to reduce speeds and provide additional connectivity. | The Plan recommends a new sidepath facility on the north side of the roadway. |
| 1 | Indianola (between Crabbs Branch Way and MD 355) | The deceleration/right turn lane into the Nissan dealership is not necessary and the space could be used to provide a bicycle facility, were one to be recommended. | The Plan recommends a new sidepath facility on the north side of the roadway. |
| 1 | Indianola (between Crabbs Branch Way and MD 355) | The sidewalk on the south side of the roadway terminates into nowhere at the bridge. No logical crossing location is provided or noted through signage. | Capital improvements should be addressed through ongoing street maintenance programs by MCDOT. |


| Walking <br> Route | Location | Comment | Response/ |
| :---: | :---: | :--- | :--- |
| 1 | Indianola Drive \& MD <br> 355 | There is no marked pedestrian crossing, nor pedestrian <br> ramps, along the south leg of the intersection. | Additional crossing could be assessed and <br> added by MDOT SHA, and such improvements <br> would impact the area's pedestrian level of <br> comfort. |
| 1 | MD 355 <br> (between Indianola <br> Drive \& Redland <br> Road) | The sidewalks are wide, but they are not adequately <br> buffered from the fast moving traffic. Additionally, the <br> sidewalk breaks for foliage provide little aesthetic <br> benefit-many of the trees are dead-and should be <br> removed. | The Plan and Vision Zero advocate for better <br> buffers. A section of MD 355 is provided in the <br> Plan. Note that the County only controls the <br> eastern side of MD 355. The western side is <br> within the jurisdiction of Rockville. |
| 1 | MD 355 <br> (between Indianola <br> Drive \& Redland <br> Road) | There are too many curb cuts on the east side of MD <br> 355. Additionally, the sidewalks ramp down to the grade <br> of the roadway; they should be held flush across the <br> driveways. | The Plan advocates for potential parallel roads <br> which would facilitate better access <br> management. The Vision Zero table in this <br> Appendix recommends the improved <br> reconstruction of existing curb cuts. |
| 1 | Redland Road \& MD <br> 355 | On the northeast corner of the intersection near the 7- <br> 11, the placement of an existing light pole obstructs an <br> accessible path (it is in the middle of the sidewalk). | ADA improvements should be addressed by <br> MCDOT. If MD 355 were to be widened for <br> transit or bicycle facilities, the pole would |
| need to be relocated. See Plan section. |  |  |  |


| Walking Route | Location | Comment | Response/ How Comment Could or Should Be Addressed |
| :---: | :---: | :---: | :---: |
| 1 | Redland Road (between MD 355 \& Yellowstone Way) | The sharrows appear unsafe as cars appear to be driving at excessive speeds, particularly down the grade of Redland Road. | The Plan recommends a sidepath at this location and the Vision Zero table in this Appendix recommends an enforcement camera within the vicinity. |
| 1 | Redland Road (between Somerville Drive \& Yellowstone Way) | It is surprising that a parking garage entry was allowed on Redland Road in the NB/EB direction given the visibility and speeds of the roadway. Is the road classified appropriately? | This Plan recommends classifying the road as a Business District Street with a 25 mile per hour target speed. The Vision Zero table in this Appendix recommends an enforcement camera within the vicinity. |
| 1 | Redland Road (between Somerville Drive \& Yellowstone Way) | The remnants of an old driveway apron disrupt the landscape strip on the north side on the roadway (where the guard rail terminates). This should be removed. | Capital improvements should be addressed through ongoing street maintenance programs by MCDOT. |
| 1 | Redland Road (between Somerville Drive \& Yellowstone Way) | There is a "people's choice path" into the Metro Station connecting to Redland Road near Yellowstone Way. This terminates in a drive aisle on the WMATA property, and is further separated by a fence. Better circulation should be provided to address more direct access to the Metro. | Improved access is anticipated through redevelopment of the WMATA Metro property. |
| 1 | Redland Road \& Yellowstone Way | The "people's choice path" suggests that a crossing may be appropriate at Redland Road \& Yellowstone Way. This would provide a better direct connection to Old Derwood. | Improved access is anticipated through redevelopment of the WMATA Metro property; the proposed street network assumes a four-way intersection at Redland Road and Yellowstone Way, which could be signalized if warranted. |
| 1 | Redland Road (between Somerville Drive and Needwood Road) | The buffer width between the sidewalk and cartway varies along the facility and should ideally be at least 5' wide. | As a component of its Vision Zero principles, the Plan recommends 6-foot buffers on all roadways. It additionally calls for vertical separation in locations where this width cannot be attained. |
| 2 | Redland Road | The posted speed is 35 mph . Can this be lowered to 30 mph? | The Vision Zero table in this Appendix recommends an enforcement camera on Redland Road. |


| Walking Route | Location | Comment | Response/ <br> How Comment Could or Should Be Addressed |
| :---: | :---: | :---: | :---: |
| 2 | Entire Walking Route | Can the existing sharrows near MD 355 be replaced with shared use paths? | The Plan's bicycle recommendations exclude on-street facilities in favor of separated facilities. |
| 2 | Entire Walking Route | The roadways around the Metro Station should be reclassified as Business District Streets (or whatever the new Complete Streets Design Guidelines dictate) | The Plan proposes streets within the Metro, but notes that these could be developed as private streets to allow greater flexibility. Illustrative sections are provided. |
| 2 | Entire Walking Route | The streets were designed as highways, arterials, and industrial roadways which makes traveling at high speeds comfortable and easy. | This Appendix includes spot speed study information that demonstrates speeds are compromising safety within the Plan Area. The Vision Zero table in this Appendix proposes improvements to reduce speeds and improve safety. |
| 2 | Entire Walking Route | The streets should be designed with a more urban/newsuburban context to slow vehicular traffic, promote transit, walking and biking, and increase comfort for walking. | The Plan supports this comment. See illustrative sections provided in the Plan, as well as the general Vision Zero recommendations in the Plan. |
| 2 | MD 355 \& King Farm Boulevard | Tighten the curb radii throughout the plan area, including MD 355, Redland Road, Crabbs Branch Way, and on the WMATA property. | The Plan supports this comment. Capital improvements should be addressed through ongoing street maintenance programs by MCDOT. |
| 2 | MD 355 and King Farm Boulevard | It's easier to cross at the southern leg than the northern leg because fewer people are turning right from either the east or the west. | Targeted right turn on red restrictions are proposed at this location in the Vision Zero table in this Appendix. |
| 2 | WMATA Connection to MD 355 | Consider implementing a No Turn on Red for WMATA egress traffic onto northbound MD 355 | Targeted right turn on red restrictions are proposed at this location in the Vision Zero table in this Appendix. |
| 2 | WMATA Connection to MD 355 | Sidepath should be located on the north side. | The Plan recommends separated bike lanes (consistent with MD 355 recommendation) on the north side of King Farm Boulevard Extended. |


| Walking Route | Location | Comment | Response/ <br> How Comment Could or Should Be Addressed |
| :---: | :---: | :---: | :---: |
| 2 | WMATA Property | Consider removing metered parking to make a more comfortable pedestrian experience with a wider sidewalk/sidepath and a tree lawn providing buffer from traffic. | The Plan recommends removing the metered parking to accommodate space for dedicated transit and an improved pedestrian environment. See illustrative section. |
| 2 | WMATA Property (Parking Lot) | Wayfinding is needed throughout the area around the Metro Station: To/from the EYA properties and the eastern Metro Station entrance; To/from King Farm and the Metro Station; To/from the trails around the stormwater ponds and the metro station. | Improved wayfinding could be provided through redevelopment of the WMATA Metro property and/or the existing MCPS bus facility. Assessment/evaluation should occur during the regulatory review process. |
| 2 | WMATA Property (Parking Lot) | There needs to be a more direct walking path from Redland Road and MD 355 to the station entrance. | Improved access is anticipated through redevelopment of the WMATA Metro property. |
| 2 | WMATA Property | Could the bus loop be stacked in two stories? That would increase capacity and provide direct access to the platform (another escalator to the platform is planned). | At this time, there are not plans to stack the bus loop and the Department defers to WMATA regarding operational needs; however, revisiting the loop-perhaps at a modest scale-could occur through the regulatory process for redevelopment of the WMATA Metro property. |
| 2 | WMATA Property (Bikeshare Station) | Move the bikeshare station location closer to the Station Entrance. | This falls within the jurisdiction of WMATA, but could be discussed through the regulatory review process for the redevelopment of the WMATA Metro property. |


| $\begin{array}{c}\text { Walking } \\ \text { Route }\end{array}$ | Location | Comment | $\begin{array}{c}\text { Response/ } \\ \text { How Comment Could or Should Be Addressed }\end{array}$ |
| :---: | :--- | :--- | :--- |
| 2 | $\begin{array}{c}\text { WMATA Property } \\ \text { (Western Side Stairs) }\end{array}$ | $\begin{array}{l}\text { Provide bike runnels on the stairs to avoid dependence } \\ \text { on the elevator. }\end{array}$ | $\begin{array}{l}\text { This improvement could be discussed through } \\ \text { the regulatory process for redevelopment of } \\ \text { the WMATA Metro property }\end{array}$ |
| 2 | EYA Property | $\begin{array}{l}\text { Why is there a fence around the surface lot as one walks } \\ \text { towards the new sidewalk on the EYA property? Is this } \\ \text { necessary for safety or security? It is off-putting. }\end{array}$ | $\begin{array}{l}\text { This fence falls within the jurisdiction of } \\ \text { WMATA, but could be discussed through the } \\ \text { regulatory review process for the } \\ \text { redevelopment of the WMATA Metro } \\ \text { property. The fence is currently employed to } \\ \text { control pedestrian flow through the parking } \\ \text { lot. }\end{array}$ |
| 2 | $\begin{array}{l}\text { BRT Stop Location at } \\ \text { Sommerville/Redland }\end{array}$ | $\begin{array}{l}\text { Should stop either at the bus loop (preference) or on MD } \\ \text { 355. Stopping at Redland Road is not a good option when } \\ \text { the station is out of sight distance. }\end{array}$ | $\begin{array}{l}\text { The Plan proposes that BRT interface with the } \\ \text { Metro Station to the closest extent possible, } \\ \text { based on operational needs. }\end{array}$ |
| 3 | $\begin{array}{l}\text { Shady Grove Road \& } \\ \text { Briardale Road }\end{array}$ | $\begin{array}{l}\text { Permissive lefts create unsafe conditions for all users and } \\ \text { split phasing may be a better solution. }\end{array}$ | $\begin{array}{l}\text { The Vision Zero Appendix for this document } \\ \text { recommends an LPI to support pedestrians at } \\ \text { this location. While removal of permissive } \\ \text { lefts is not proposed here, the Plan's }\end{array}$ |
| principles would support the exploration of |  |  |  |
| split phasing. Permissive lefts were shown to |  |  |  |
| be problematic elsewhere in the Plan Area. |  |  |  |$]$| Capital improvements should be addressed |
| :--- |
| through ongoing street maintenance |
| programs by MCDOT. |


| Walking Route | Location | Comment | Response/ <br> How Comment Could or Should Be Addressed |
| :---: | :---: | :---: | :---: |
| 3 | Shady Grove Road \& Briardale Road | Sight distance for right-turning vehicles is poor consider "no turn on red" restrictions | While not included in the Vision Zero table, the Plan's Vision Zero principles support the exploration of this improvement. |
| 3 | Shady Grove Road \& Briardale Road | No pedestrian refuge provided for either crossing leg on Shady Grove Road | This Plan supports the provision of median noses to provide pedestrian refuges where possible. |
| 3 | Shady Grove Road \& Briardale Road | Repurposing the bike shoulder, sidewalk, and existing ROW could accommodate a 10 -foot sidepath on the east side of Shady Grove Road (from Briardale to Tupelo) | This Plan proposes a 10-foot bicycle facility on Shady Grove Road, which would replace the existing unsafe bicycle lanes. |
| 3 | Shady Grove Road \& Tupelo Drive | No crosswalk on the east side of Briardale | While not included in the Vision Zero table, the Plan's Vision Zero principles support the exploration of this improvement. |
| 3 | Shady Grove Road \& Tupelo Drive | No crosswalk on the south leg of Shady Grove Road | While not included in the Vision Zero table, the Plan's Vision Zero principles support the exploration of this improvement. |
| 3 | Shady Grove Road \& Tupelo Drive | No crosswalks or APS on either leg of Tupelo Drive | ADA capital improvements should be addressed through ongoing street maintenance programs by MCDOT. |
| 3 | Shady Grove Road \& Tupelo Drive | Crossing time (23 seconds) seem short. | While not included in the Vision Zero table, the Plan's Vision Zero principles support the exploration of this improvement. |
| 3 | Shady Grove Road \& Tupelo Drive | No pedestrian refuge provided for either crossing leg on Shady Grove Road | While not included in the Vision Zero table, the Plan's Vision Zero principles support the exploration of this improvement. |
| 3 | Shady Grove Road \& Tupelo Drive | Prohibit "right-turn on red" movements from southbound Tupelo Drive (onto Shady Grove Road) all day instead of current AM peak period ( $6-9 \mathrm{am}$ ) | While not included in the Vision Zero table, the Plan's Vision Zero principles support the exploration of this improvement. |
| 3 | Shady Grove Road \& Tupelo Drive | Lead-in sidewalk to the neighborhood on Tupleo Drive (east of Shady Grove Road) would provide a safe connection to the intersection | While not included in the Vision Zero table, the Plan's Vision Zero principles support the exploration of this improvement. |


| Walking <br> Route | Location | Comment | Response/ <br> How Comment Could or Should Be Addressed |
| :---: | :--- | :--- | :--- |
| 3 |  <br> Tupelo Drive | Southeast corner of the intersection is missing tactile <br> warning strip. | ADA capital improvements should be <br> addressed through ongoing street <br> maintenance programs by MCDOT. |
| 3 |  <br> Tupelo Drive | Bus stop on southwest corner is not fully accessible <br> (grade changes) | ADA capital improvements should be <br> addressed through ongoing street <br> maintenance programs by MCDOT. |
| 3 |  <br> Midcounty Highway | Right-turning movement from Shady Grove Road to <br> Tupelo seems difficult due to speeds on Shady Grove <br> Road | Speeds are high along Shady Grove Road; this <br> Plan supports enforcement and engineering <br> strategies, such as lane narrowing, to reduce <br> speeds. See the illustrative section. |
| 3 |  <br> Midcounty Highway | Crosswalk on southern leg of Shady Grove Road does not <br> connect to west side | While not included in the Vision Zero able, the <br> Plan's Vision Zero principles support the <br> exploration of this improvement. |
| 3 |  <br> Midcounty Highway | No pedestrian refuge provided for south leg of Shady <br> Grove Road | While not included in the Vision Zero table, <br> the Plan's Vision Zero principles support the <br> exploration of this improvement. |
| 3 |  <br> Midcounty Highway | There are no crosswalk or curb ramps provided crossing <br> Midcounty Highway but APS is in place and active <br> Midcounty Highway | ADA capital improvements should be <br> addressed through ongoing street <br> maintenance programs by MCDOT. |
| 3 | Redland Road <br> (Beyond Needwood) | Sidewalks are missing for major stretches <br> Highway to Shady Grove Road are dangerous and | While not included in the Vision Zero table, <br> the Plan's Vision Zero principles support the <br> exploration of this improvement. |
| 3 | Redland Road <br> (Beyond Needwood) | No crossing to bus stop on Redland directly south of ICC | This Plan advocates for the provision of <br> continuous pedestrian facilities on Redland <br> Road. |
| 3 | This Plan recommends that all bus stops be <br> located proximate to safe, accessible <br> crossings. |  |  |
| Redland Road | No crossing for the bus stop at Redland and Briardale | This Plan recommends that all bus stops be <br> located proximate to safe, accessible <br> (Beossings. |  |
| Needwood) |  |  |  |


| Walking <br> Route | Location | Comment | Response/ <br> How Comment Could or Should Be Addressed |
| :---: | :---: | :--- | :--- |
| 3 | Redland Road <br> (Beyond Needwood) | Sight distance issues for both pedestrian and vehicles at <br> the intersection of Redland and Briardale could result in <br> conflicts | Sight distance could be explored and <br> improved through capital projects associated <br> with the provision of a new sidewalk along <br> Redland Road. |

## ii. Pedestrian Level of Comfort Analysis

The "Pedestrian Level of Comfort" analysis is a beta-level tool that assigns a score to pedestrian facilities based on a number of design and operational factors and a facility's given geographic context. Nonintersection walking facilities (i.e. sidewalks or paths) are scored based on the presence and quality of the following features:

- facility width;
- presence and width of a buffer, including parking lanes;
- presence and frequency of obstructions;
- posted traffic speed limit of adjacent segment;
- average daily traffic of adjacent segment;

Intersection facilities (i.e. crossings) are scored using the following factors:

- posted speed limit of the street being crossed;
- number of lanes of the street being crossed, including turning lanes;
- presence or absence of a pedestrian refuge;
- presence or absence of appropriate markings/signage;
- traffic controls at intersections (e.g. signalization, right-turn on red restrictions, etc.); and
- lighting

While the tool will further evolve per the direction of the Department's first Pedestrian Plan, the beta tool has also been used to assess pedestrian conditions for the Veirs Mill Corridor Master Plan and the Montgomery Hills/Forest Glen Sector Plan. ${ }^{1}$ The tool identifies segments and crossings as "very comfortable," (safe for adults and small children) "comfortable," (safe for adults, but suitable only for small children if holding hands or guided) and "uncomfortable" (adults will walk if they have to, but the condition is not suitable for children). Gaps in facilities are noted but not scored. The "existing conditions" pedestrian level of comfort network is shown in Figure 5.

Staff ran a connectivity analysis to determine accessibility to WMATA's Shady Grove Metrorail Station to examine which residential units can access the station in a given amount of time, and how that connectivity decreases assuming people avoid uncomfortable pedestrian facilities. The analysis assumes that people walk at a speed of 3.5 feet per second and factors in average intersection delay of the study intersections (discussed in section iii below under the "Pedestrian Intersection Counts \& Delay Analysis" header). Figure 6 shows "baseline" connectivity to the station on all existing pedestrian segments at 15, 20,25 , and 30 -minute intervals. Figure 7 then shows how connectivity decreases after uncomfortable segments are removed. Table 2 summarizes the results of the analysis. There are 1,423 units within a 15 -minute walk from the Shady Grove Metro Station, but only $28 \%$ (394) of those units can access the Metro Station by comfortable path. There are 5,015 units within a 30 -minute walk from the Shady Grove Metrorail Station, but only $15 \%$ (736) can access the metro along a comfortable path. ${ }^{1}$

The analysis demonstrates that crossings present significant barriers. In order to access the Metro Station, many residents need to cross multilane roadways, including MD 355, Shady Grove Road, and Crabbs Branch Way. There are only two "comfortable" crossings of Redland Road within the vicinity of

[^0]the Metro Station at Metro Station Access Road and Needwood Road, and these are the only two crossings that provide "comfortable" access into the Shady Grove Metro Station Policy Area. Additional barriers include a wide an unbuffered sidewalk along MD 355, inadequate sidewalk facilities along Shady Grove Road, and unbuffered, unsafe facilities around WMATA's Metrorail Bus Loop. Improving crossings and these facilities would improve comfortable connectivity in the Plan area.

Figure 5 - Pedestrian Level of Comfort Network


Figure 6 - Pedestrian Level of Comfort Baseline Analysis


Figure 7 - Pedestrian Level of Comfort - Comfortable Walk Analysis


Table 2 - Pedestrian Level of Comfort Analysis: Dwellings Comfortably Connected to the Metro

|  | Dwelling <br> Units | Dwelling Units Connected <br> via Comfortable Facilities | Percent <br> Connected |
| :--- | :---: | :---: | :---: |
| 15 Minute <br> Walkshed | 1432 | 394 | $28 \%$ |
| 20 Minute <br> Walkshed | 2798 | 457 | $16 \%$ |
| 25 Minute <br> Walkshed | 4270 | 647 | $15 \%$ |
| 30 Minute <br> Walkshed | 5015 | 736 | $15 \%$ |

## iii. Pedestrian Intersection Counts \& Delay Analysis

Pedestrian counts were taken for several intersections within the Plan area and the immediate vicinity. Signal timing sheets were used to calculate the pedestrian delay for crossing intersection legs using the generally accepted equation from the Highway Capacity Manual, $6{ }^{\text {th }}$ Edition (2016):

$$
\begin{aligned}
& \mathbf{d}_{\mathrm{p}}=\left(\mathbf{C}-\mathbf{g}_{\text {walk }, \mathrm{mi}}\right)^{2} / 2 \mathrm{C} \\
& \mathrm{~d}_{\mathrm{p}}=\text { pedestrian delay } \\
& \mathrm{C}=\text { cycle length } \\
& \mathrm{g}_{\text {walk,mi }}=\text { effective walk time }
\end{aligned}
$$

Effective walk time is calculated based on the signal settings in operation. Most of the signals in the Plan area are actuated rather than pre-timed and have the "rest in walk" enabled for the minor street, which provides automatic pedestrian service when the major street is in operation. In such situations, Highway Capacity Manual, $6{ }^{\text {th }}$ Edition's (2016) equation 19-55 was used:

$$
g_{\text {walk }, m i}=D_{p, m i}-Y_{m i}-R_{c, m i}-P C_{m i}+4.0
$$

$D_{p}=$ duration of phase serving the subject crossing's associated through-movement $Y=$ yellow change interval
$\mathrm{R}_{\mathrm{c}}=$ red clearance interval
$\mathrm{PC}=$ the pedestrian clearance setting

Pedestrian delay was not weighted by the number of pedestrians crossing the intersection; however, counts are included in Table 2 and reflect totals for the morning, lunchtime, and evening peak hours. This planning-level data provides an order of magnitude assessment regarding which intersections currently facilitate the greatest amount of pedestrian traffic.

Table 3 shows that crossing delay over larger roads, in particular MD 355, are excessive. The Plan supports minimizing crossing times to encourage walking as a mode of transportation. Reducing the amount of time it takes to walk to transportation nodes improves individuals' access and likelihood of "walking" as a realistic and desirable mode choice. The PLOC analysis detailed in section ii in tandem with pedestrian volumes suggest that improving the comfort and convenience of MD 355 crossings is paramount.

Table 3 - Pedestrian Counts and Delay

| Pedestrian Crossing Counts and Delay Summary <br> (counts taken between 6:30am-9:30am, 11:00am-1:00pm, and 4:00pm-7:00pm w/ some mild variation at lunch period) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Intersection | Approach | Total Pedestrian Crossings per Approach | Pedestrian <br> Delay AM <br> (seconds) | Pedestrian Delay PM (seconds) |
| Indianola at Crabbs Branch | Crabbs Branch Crossing at Indianola (north side) | 13 | 12.2 | 12.2 |
|  | Crabbs Branch Crossing at Indianola (south side) | 7 | 12.2 | 12.2 |
|  | Indianola Crossing at Crabbs Branch (east side) | 20 | 31.9 | 31.9 |
|  | Indianola Crossing at Crabbs Branch (west side) | 15 | 31.9 | 31.9 |
| E. Gude at Crabbs Branch | Crabbs Branch Crossing at E. Gude (north side) | 8 | 44.1 | 44.1 |
|  | Cecil Crossing at W. Gude (south side) | 20 | 31.4 | 31.4 |
|  | E. Gude Crossing at Crabbs Branch (east side) | 11 | 64.4 | 64.4 |
|  | E. Gude Crossing at Crabbs Branch (west side) | 19 | 64.4 | 64.4 |
| Indianola/ Watkins Pond at 355 | 355 Crossing at Indianola (north side) | 45 | 63.5 | 61.7 |
|  | 355 Crossing at Indianola (south side) | 2 | N/A | N/A |
|  | Indianola Crossing at 355 (east side) | 37 | 28.2 | 30.7 |
|  | Watkins Pond Crossing at 355 (west side) | 30 | 28.2 | 30.7 |
| King Farm at 355 | 355 Crossing at King Farm (north side) | 211 | 63.9 | 63.9 |
|  | 355 Crossing at King Farm (south side) | 117 | 63.9 | 63.9 |
|  | King Farm Crossing at 355 (east side) | 30 | 20.3 | 20.3 |
|  | King Farm Crossing at 355 (west side) | 24 | 20.3 | 20.3 |
| Redland at 355 | 355 Crossing at Redland (north side) | 71 | 63.9 | 63.9 |
|  | 355 Crossing at Redland (south side) | 64 | 63.9 | 63.9 |
|  | Redland Crossing at 355 (east side) | 41 | 32.7 | 32.7 |
|  | Redland Crossing at 355 (west side) | 41 | 32.7 | 32.7 |
| $\begin{aligned} & \text { Ridgemont } \\ & \text { at } 355 \end{aligned}$ | 355 Crossing at Ridgemont (north side) | 0 | N/A | N/A |
|  | 355 Crossing at Ridgemont (south side) | 8 | 64.4 | 64.4 |
|  | Ridgemont Crossing at 355 (east side) | 16 | 15 | 15 |
|  | Ridgemont Crossing at 355 (west side) | 5 | 15 | 15 |
| Gude at 355 | 355 Crossing at Gude (north) | 3 | N/A | N/A |
|  | 355 Crossing at Gude (south) | 35 | 71.1 | 63.5 |
|  | E. Gude Crossing at 355 (east side) | 18 | 34.7 | 38.9 |
|  | W. Gude Crossing at 355 (west side) | 27 | 48 | 44.1 |
| King Farm at Gaither Road | Gaither Crossing at King Farm (north side) | 27 | 32.2 | 32.2 |
|  | Gaither Crossing at King Farm (south side) | 64 | 32.2 | 32.2 |
|  | King Farm at Gaither (east side) | 23 | 32.2 | 32.2 |
|  | King Farm at Gaither (west side) | 35 | 32.2 | 32.2 |

Table 3 Continued

| Intersection | Approach | Total Pedestrian Crossings per Approach | Pedestrian Delay AM (seconds) | Pedestrian Delay PM (seconds) |
| :---: | :---: | :---: | :---: | :---: |
| Piccard at Gaither | Gaither Crossing at Piccard (north side) | 38 | 30.6 | 30.6 |
|  | Gaither Crossing at Piccard (south side) | 20 | 30.6 | 30.6 |
|  | Piccard Crossing at Gaither (east side) | 19 | 15.8 | 15.8 |
|  | Piccard at Gaither (west side) | 21 | 15.8 | 15.8 |
| Redland at Gaither | Gaither Crossing at Redland (north side) | 32 | No Data | No Data |
|  | Gaither Crossing at Redland (south side) | 49 | No Data | No Data |
|  | Redland Crossing at Gaither (east side) | 21 | No Data | No Data |
|  | Redland Crossing at Gaither (west side) | 32 | No Data | No Data |
| W. Gude at Gaither | Gaither Crossing at W. Gude (north side) | 7 | 39.6 | 39.6 |
|  | W. Gude Crossing at Gaither (east side) | 0 | N/A | N/A |
|  | W. Gude Crossing at Gaither (west side) | 30 | 43.1 | 43.1 |
| King Farm at Pleasant | Pleasant Crossing at King Farm (north side) | 49 | No Data | No Data |
|  | Pleasant Crossing at King Farm (south side) | 82 | No Data | No Data |
|  | King Farm Crossing at Pleasant (east side) | 51 | No Data | No Data |
|  | King Farm Crossing at Pleasant (west side) | 48 | No Data | No Data |
| Redland at Pleasant | Pleasant Crossing at Redland (north side) | 71 | No Data | No Data |
|  | Pleasant Crossing at Redland (south side) | 61 | No Data | No Data |
|  | Redland Crossing at Pleasant (east side) | 74 | No Data | No Data |
|  | Redland Crossing at Pleasant (west side) | 104 | No Data | No Data |
| Redland at Thompson Dairy | Thompson Dairy Crossing at Redland (north side) | 20 | No Data | No Data |
|  | Thompson Dairy Crossing at Redland (south side) | 47 | No Data | No Data |
|  | Redland Crossing at Thompson Dairy (east side) | 36 | No Data | No Data |
|  | Redland Crossing at Thompson Dairy (west side) | 26 | No Data | No Data |
| Redland at Crabbs Branch | Crabbs Branch Crossing at Redland (north side) | 68 | 33.7 | 40 |
|  | Crabbs Branch Crossing at Redland (south side) | 9 | 61.2 | 40 |
|  | Redland Crossing at Crabbs Branch (east side) | 7 | 53.3 | 61.2 |
|  | Redland Crossing at Crabbs Branch (west side) | 15 | 50.8 | 61.2 |
| Redland at Needwood | Needwood Crossing at Redland Road (north side) | 27 | 27 | 20.3 |
|  | Needwood Crossing at Redland (south side) | 1 | 27 | 20.3 |
|  | Redland Crossing at Needwood (east side) | 7 | 60.3 | 71.5 |
|  | Redland Crossing at Needwood (west side) | 9 | 54.2 | 54.2 |
| Redland <br> Road at <br> Metro <br> Access | Metro Access Crossing at Redland (north side) | 58 | 17.3 | 17.3 |
|  | Redland Crossing at Metro Access (east side) | 2 | N/A | N/A |
|  | Redland Crossing at Metro Access (west side) | 12 | 54.2 | 52.2 |

Table 3 Continued

| Intersection | Approach | Total Pedestrian Crossings per Approach | Pedestrian Delay AM (seconds) | Pedestrian Delay PM (seconds) |
| :---: | :---: | :---: | :---: | :---: |
| Shady Grove at Gaither | Gaither Crossing at Shady Grove (north side) | 39 | 63.9 | 63.9 |
|  | Gaither Crossing at Shady Grove (south side) | 26 | N/A | N/A |
|  | Shady Grove Crossing at Gaither (east side) | 58 | 38.9 | 43.3 |
|  | Shady Grove Crossing at Gaither (west side) | 9 | 52.9 | 43.4 |
| Shady Grove at Oakmont | Oakmont Crossing at Shady Grove (north side) | 1 | 31.4 | 37.5 |
|  | Business Entrance Crossing at Shady Grove (south side) | 3 | 27.6 | 33.3 |
|  | Shady Grove Crossing at Oakmont (east side) | 10 | N/A | N/A |
|  | Shady Grove Crossing at Oakmont (west side) | 1 | 46.8 | 49.2 |
| Shady Grove at Crabbs Branch | Crabbs Branch Crossing at Shady Grove (north side) | 27 | 59.4 | 50.8 |
|  | Crabbs Branch Crossing at Shady Grove (south side) | 7 | 59.4 | 50.8 |
|  | Shady Grove Crossing at Crabbs Branch (east side) | 30 | 63.9 | 63.9 |
|  | Shady Grove Crossing at Crabbs Branch (west side) | 38 | 63.5 | 63.5 |
| Shady Grove at 355 | 355 Crossing at Shady Grove (north side) | 44 | 64.1 | 64.4 |
|  | 355 Crossing at Shady Grove (south side) | 14 | N/A | N/A |
|  | Shady Grove Crossing at 355 (east side) | 10 | 61.2 | 56.8 |
|  | Shady Grove Crossing at 355 (west side) | 70 | 53.5 | 63.9 |
| Redland at Somerville | Somerville Crossing at Redland (north side) | 77 | 12.4 | 12.4 |
|  | Somerville Crossing at Redland (south side) | 28 | 12.4 | 12.4 |
|  | Redland Crossing at Somerville (east side) | 40 | 42.9 | 42.9 |
|  | Redland Crossing at Somerville (west side) | 82 | 42.9 | 42.9 |
| W. Gude at Watkins Pond | Watkins Pond Crossing at W. Gude (north side) | 2 | 30.9 | 34.7 |
|  | W. Gude Crossing at Watkins Pond (east side) | 3 | N/A | N/A |
|  | W. Gude at Watkins Pond (west side) | 33 | 37.6 | 41.6 |

## iv. Existing and Planned Bicycling Conditions

The Plan currently contains several constructed bicycle facilities, including a sidepath on the eastern side of Metro Access Road, extending between Shady Grove Road and Redland Road, a sidepath on the northern side of Redland Road spanning between Needwood Road and Metro Access Road, and a sidepath on Crabbs Branch Way extending between Shady Grove Road and Redland Road. The 2006 Shady Grove Sector Plan recommended these facilities, and the facilities were implemented following the 2006 Plan's adoption by development interests, the Washington Metropolitan Area Transit Authority (WMATA), and the County. While these segments improve accessibility for local users, a lack of bicycle network connectivity beyond the Metro Station Policy Area inhibits the realization of these facilities full potential.

In addition to the facilities listed above, Gude Drive provides an eight-foot sidepath along the southern border of the Plan area. This facility makes up a portion of the City of Rockville's Carl Henn Millennium Trail. While it exists today, improvements to improve separation/buffering between the cartway and the facility would improve safety for pedestrians and bicyclists.

The 2018 Bicycle Master Plan amended the bicycle facility recommendations of the 2006 Shady Grove Sector Plan, both in terms of nomenclature and quality. The 2006 plan supported some on-street facilities, including bicycle lanes and sharrows, whereas the 2018 Bicycle Master Plan largely stepped away from such facilities (beyond bikeable shoulders) in favor of greater geometric separation between bicyclists and vehicles. Separation improves safety for users by vastly reducing the number of locations where vehicles and bicycles can interact and conflict.

In terms of nomenclature, the 2018 Bicycle Master Plan adopted the terms "separated bicycle lanes" and "sidepaths" when facilities are separated from traffic. Sidepaths can be dedicated for bicycle use (when a separate pedestrian facility is present), but can also facilitate both pedestrian and bicycle traffic when appropriately designed. In this regard, sidepaths are like the "shared use paths" recommended in the 2006 Shady Grove Sector Plan. The 2018 Bicycle Master Plan also adopts the concept of "Breezeways," which are facilities anticipated to facilitate greater volumes of bicycle traffic at higher speeds, requiring higher-quality design. The 2020 Shady Grove Minor Master Plan Amendment adopts the 2018 Plan's nomenclature. Figure 8 shows the 2006 Plan's Bicycle Network, and Figures 9 and 10 depict the 2018 Bicycle Master Plan's recommended bicycle network.

The 2020 Shady Grove Sector Plan Minor Master Plan Amendment amends the recommendations of the 2018 Bicycle Master Plan. The planning process provided a finer-grained look at local conditions, needs, and opportunities, and balanced the visionary principles of the 2018 Bicycle Master Plan with the realistic context of the Shady Grove Planning Area. Factors that influenced changes included the lack of development potential, the lack of right-of-way width with poor prospects to gain additional right-ofway, and the presence of mature tree canopy in some locations. It is important to note that existing mature trees contribute to the canopy coverage requirements detailed in the Plan's environmental recommendations.

The recommendations of the 2020 Plan could conceivably be implemented within the lifespan of the Plan should funding be available from the County. Most of the recommended facilities are not located near anticipated development. As such, the facilities would need to be programmed in the County's Capital Improvement Program (CIP).

Table 4 provides the existing and amended bicycle network with important additional qualifying footnotes to aid the development of future facilities. Facilities with additional qualification are highlighted. Table 5 identifies facilities that are removed from 2018 Bicycle Master Plan, including the rationale for their removal.

Figure 8-2006 Shady Grove Sector Plan Bicycle Network

-I■I■ Proposed Shared-Use Paths (Class I)
-alla Proposed Bike Lanes (Class II)

แииин Proposed Shared-Use Roadways (Class III)
m....... See Park Trail No. 9 Discussion in Public Facilities Chapter

Note: Shared-Use Paths, Class I, are also shown on Pedestrian Network Map Reference Numbers correlate with County Bikeway Functional Master Plan


Figure 9-2018 Bicycle Master Plan Network for Derwood


Figure 10-2018 Bicycle Master Plan for Metro Station Policy Area


Table 4 - Constructed and Recommended Bicycle Network

| PROJECT / STREET | TO | FROM | BIKEWAY TYPE | STATUS |
| :---: | :---: | :---: | :---: | :---: |
| CLARKSBURG TO CITY OF GAITHERSBURG BREEZEWAY |  |  |  |  |
| Frederick Rd (MD 355) | City of Gaithersburg City Limits | Southern Plan Boundary | Separated Bike Lanes (Two-Way, East Side) | Proposed |
| INTERCOUNTY CONNECTOR TRAIL BREEZEWAY |  |  |  |  |
| Redland Rd ${ }^{1}$ | Frederick Rd (MD 355) | Metro Access Road | Sidepath (North Side) | Proposed |
| Metro Access Road ${ }^{1}$ | Redland Rd | Shady Grove Rd | Sidepath (East Side) | Existing |
| Shady Grove Rd ${ }^{1,3,4}$ | Metro Access Rd/I-370 Ramps | Midcounty Highway | Sidepath (South Side) | Proposed |
| Midcounty Hwy ${ }^{1,2}$ | Shady Grove Rd | Redland Rd | Off-Street Trail | Proposed |
| LIFE SCIENCES CENTER TO SHADY GROVE METRO BREEZEWAY |  |  |  |  |
| Shady Grove Rd | Western Plan Boundary | Shady Grove Access Rd/I-370 Ramps | Sidepath (South Side) | Proposed |
| ADDITIONAL RECOMMENDATIONS |  |  |  |  |
| Amity Drive ${ }^{3}$ | Washington Grove Ln | 118' West of Castanea Lane | Sidepath (North Side) | Proposed |
| Crabbs Branch Way | 118' West of Castanea Lane | Shady Grove Rd | Sidepath (East Side) | Proposed |
| Crabbs Branch Way | Shady Grove Rd | Redland Rd | Sidepath (East Side) | Existing |
| Crabbs Branch Way | Redland Rd | E Gude Dr | Sidepath (East Side) | Proposed |
| E Gude Drive ${ }^{4}$ | City of Rockville Limits | Eastern Plan Boundary | Sidepath (West Side) | Improvement proposed |
| Indianola Dr | Frederick Rd (MD 355) | Crabbs Branch Way | Sidepath (North Side) | Proposed |
| Midcounty Hwy | Northern Plan Boundary | Shady Grove Rd | Sidepath (South Side) | Proposed |
| Midcounty Hwy ${ }^{5}$ | Northern Plan Boundary | Shady Grove Rd | Bikeable Shoulders | Improvement proposed |
| Piedmont Crossing Local Park Trail | Brown St | Crabbs Branch Rd/Amity Dr Ext | Off-Street Trail | Proposed |
| Redland $\mathrm{Rd}^{4}$ | Shady Grove Access Rd | Needwood Rd (north access) | Sidepath (North Side) | Improvement proposed |
| Redland Rd ${ }^{3,4}$ | Needwood Rd (north access) | Northern Plan Area Boundary | Sidepath (North Side) | Proposed |
| King Farm Boulevard Ext | Frederick Rd (MD 355) | Shady Grove Metro Station | Separated Bike Lanes (Two-Way, North Side) | Proposed |
| Somerville Dr Ext | King Farm Blvd Ext | Redland Rd | Sidepath (North Side) | Proposed |

${ }^{1}$ Due to constraints on Shady Grove Road and Redland Road, Intercounty Connector Trail Breezeway may be constructed to be 10' wide as consistent with the existing segments along Metro Access Road.
${ }^{2}$ Alternative treatments, such as flexible pavement or a structured facility, may be acceptable for conservation purposes.
${ }^{3}$ This Plan supports the retention of existing mature trees within the right-of-way, where possible
${ }^{4}$ Provide adequate separation between the facility and the roadway; if a buffer of at least 6' cannot be achieved, provide vertical separation between non-motorists and the roadway
${ }^{5}$ Where the shoulders cross deceleration and turning lanes, provide striping and markings to improve safety; if a future capital project repurposes existing right-ofway to accommodate the planned sidepath on the south side, the bikeable shoulders may be removed in support of a safer, separated facility.

Table 5 - Facilities Removed from the 2018 Bicycle Master Plan \& Rationale

| PROJECT / STREET | FROM | то | BIKEWAY TYPE | RAtionale |
| :---: | :---: | :---: | :---: | :---: |
| REMOVED FACILITIES |  |  |  |  |
| Frederick Rd (MD 355) | Shady Grove Rd | Gude Drive | Sidepath (West Side) | Majority of Segment on West Side within City of Rockville |
| Redland Rd | Needwood Rd (southern access) | Muncaster Mill Rd | Bikeable Shoulders (South Side) | Focus on Protected Facility on North Side of Right-Of-Way |
| Crabbs Branch Way | 1,000' North of I-370 | Redland Rd | Sidepath (West Side) | Not Constructed with Recent Development; Space Limitations on Bridge |
| Oakmont Ave | Central Ave | Shady Grove Rd | Sidepath (East Side) | Changed Facility Classification to Industrial St; Focus on Safer Parallel Connection at Brown St |
| Needwood Rd | Redland Rd | Blueberry Hill Park | Sidepath (East Side) | Existing Wide Sidewalk Between Property Line and Mature Trees |

## v. Existing Transit Use

Consistent with macro-level trends, transit use in the Plan Area has declined over the past few years. Data from the Montgomery County Department of Transportation's (MCDOT) RideOn bus service and the Washington Metropolitan Area Transportation Authority (WMATA) suggest that the decline, however, may be leveling out along-at least for Metrorail use and some bus routes. Figure 11 depicts the Average number of weekday bus Riders for RideOn and WMATA lines that move through or terminate in the Plan area. The most noticeable losses are on RideOn's 55 line, and WMATA Metrobus's Q line. Figure 12 shows the average number of weekday entries and exits at WMATA's Shady Grove Metrorail Station.

Figure 11 - Average Weekday Bus Riders by Line FY2014-FY2018


Figure 12 - Average Number of Weekday Entries/Exits at the WMATA Shady Grove Metrorail Station


Despite slight declines in ridership, WMATA's Shady Grove Metrorail Station remains an important node for the area. As a terminus for the redline, people access the station in various ways, including transfers from other transportation modes. Figure 13 shows how people access the Metrorail station, and Figure 14 shows daily boardings relative to other redline stations (based on 2017 data). At 11,139 average boardings per weekday (2017), Shady Grove is the second-most used station in the county, and the fifthmost used redline station. The Metrorail Station currently has 5,745 space lot capacity, and consistent with the slight uptick in average boardings between 2017 and 2018 (see Figure 13), paid parking transactions increased by $8 \%$ between 2018 and 2019, suggesting ridership trends are continuing to stabilize.

Figure 13 - How People Access the Shady Grove Metrorail Station (source: WMATA's 2016 Passenger Survey)


| $\square$ Drove Alone | Commuter Bus | $\square$ Dropped Off | $\square$ Walked |
| :--- | :--- | :--- | :--- |$\quad$ Metrobus

Figure 14 - Average Daily Redline Boardings (2017)


Beyond Metrorail, Metrobus, and RideOn, a number of Maryland Transit Authority (MTA) commuter buses serve the Plan Area. Table 6 depicts the average weekday ridership for these services in 2018.

Table 6 - Average Weekday Commuter Bus Ridership in FY 2018

| MTA <br> Commuter <br> Bus Route | Service Route | Sector Plan - Vicinity <br> Boarding/Alighting Location | Average Weekday <br> Ridership FY2018 |
| :---: | :---: | :---: | :---: |
| $\mathbf{2 0 1}$ | Gaithersburg to BWI Business <br> District via ICC | Gaithersburg Park \& Ride Stop | 373 |
| $\mathbf{2 0 2}$ | Gaithersburg to Fort Meade via <br> ICC (discontinued) | Shady Grove Metro Station | 54 |
| $\mathbf{2 0 4}$ | Frederick to College Park via ICC | Gaithersburg Park \& Ride | 249 |
| $\mathbf{5 0 5}$ | Hagerstown to Rock Spring via <br> I-70 and I-270 | Shady Grove Metro Station | 376 |
| $\mathbf{5 1 5}$ | Monacacy to Rock Spring via <br> MD 355 and I-270 | Shady Grove Metro Station | 643 |

## B. Vision Zero Analysis

Three of the county's "High-Injury Network" segments are located in the Plan Area, including:

- Frederick Road, for the extent of the Plan Area;
- Crabbs Branch Way, between Redland Road and Indianola Drive, and;
- Shady Grove Road, between the Metro Access Road/I-370 Interchange to Midcounty Highway

To better understand how to support improvements along the segments listed above and the Sector Plan Area at large, staff analyzed existing vehicular speeds and Plan Area crashes.

## i. Speed Analysis

Excessive speeds reduce drivers' cones of vision and increase the potential for harm during crashes.
Figure 15, based on the research and produced by the Vision Zero Network, shows that only one out of ten pedestrians survive when hit by a vehicle traveling at a speed of forty miles per hour. During scheduled meetings, the community cited concerns about speeding in the Plan Area. Participants in the Plan's Walkshop event also noted that drivers appeared to exceed posted speeds along major roadways like Crabbs Branch Way, Redland Road, and Shady Grove Road. As such, spot speed studies were taken to understand vehicle speeds along roadways in the Sector Plan Area. Figure 16 depicts the locations where tubes were placed to collect speed information for 13-hours (6:00am-7:00pm) on a typical weekday (Tuesday, April 2, 2019). Table 7 provides a summary of the speed collection for the six locations in both northbound and southbound directions.

Figure 15 - Pedestrian Crash Survival Based on Speed (Source: Vision Zero Network)


9 out of 10 pedestrians survive.

Hit by a vehicle traveling at


Hit by a vehicle traveling at


Figure 16 - Location of Tubes for Spot Speed Studies


Table 7- Spot Speed Study Results


| Crabbs Branch Way Between Redland Road and Gramercy Boulevard |  |  |  |  | Crabbs Branch Way Between Redland Road and Gramercy Boulevard |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SPEED | FREQUENCY OF VEHICLES | CUMULATIVE FREQUENCY | SPEED PERCENTILE | $\begin{aligned} & \text { Q } \\ & 2 \\ & 0 \\ & \text { or } \\ & \vdots \\ & \text { O} \end{aligned}$ | SPEED | FREQUENCY OF VEHICLES | CUMULATIVE FREQUENCY | SPEED PERCENTILE |
|  | $\begin{gathered} 1-5 \\ M P H \end{gathered}$ | 1412 | 1412 | 27\% |  | $\begin{gathered} 1-5 \\ \mathrm{MPH} \end{gathered}$ | 45 | 45 | 1\% |
|  | $\begin{aligned} & 6-10 \\ & \text { MPH } \end{aligned}$ | 5 | 1417 | 27\% |  | $\begin{aligned} & 6-10 \\ & \text { MPH } \end{aligned}$ | 7 | 52 | 1\% |
|  | $\begin{aligned} & 11-15 \\ & \text { MPH } \end{aligned}$ | 1 | 1418 | 27\% |  | $\begin{aligned} & 11-15 \\ & \mathrm{MPH} \end{aligned}$ | 2 | 54 | 1\% |
|  | $\begin{aligned} & 16-20 \\ & \mathrm{MPH} \end{aligned}$ | 2 | 1420 | 27\% |  | $\begin{aligned} & 16-20 \\ & \mathrm{MPH} \end{aligned}$ | 6 | 60 | 1\% |
|  | $\begin{aligned} & 21-25 \\ & \text { MPH } \end{aligned}$ | 9 | 1429 | 27\% |  | $\begin{aligned} & 21-25 \\ & \text { MPH } \end{aligned}$ | 15 | 75 | 1\% |
|  | $\begin{aligned} & 26-30 \\ & \text { MPH } \end{aligned}$ | 69 | 1498 | 29\% |  | $\begin{aligned} & 26-30 \\ & \text { MPH } \end{aligned}$ | 109 | 184 | 3\% |
|  | $\begin{aligned} & 31-35 \\ & \text { MPH } \end{aligned}$ | 509 | 2007 | 38\% |  | $\begin{gathered} 31-35 \\ \text { MPH } \end{gathered}$ | 775 | 959 | 16\% |
|  | $\begin{aligned} & 36-40 \\ & \text { MPH } \end{aligned}$ | 1607 | 3614 | 69\% |  | $\begin{gathered} 36-40 \\ \text { MPH } \end{gathered}$ | 2416 | 3375 | 55\% |
|  | $\begin{aligned} & 41-45 \\ & \text { MPH } \end{aligned}$ | 1207 | 4821 | 92\% |  | $\begin{aligned} & 41-45 \\ & \text { MPH } \end{aligned}$ | 2025 | 5400 | 88\% |
|  | $\begin{aligned} & 46-50 \\ & \text { MPH } \end{aligned}$ | 325 | 5146 | 99\% |  | $\begin{gathered} 46-50 \\ \text { MPH } \end{gathered}$ | 619 | 6019 | 98\% |
|  | $\begin{aligned} & \text { 51-55 } \\ & \text { MPH } \end{aligned}$ | 62 | 5208 | 100\% |  | $\begin{gathered} \text { 51-55 } \\ \text { MPH } \end{gathered}$ | 113 | 6132 | 100\% |
|  | $\begin{aligned} & \text { 56-60 } \\ & \text { MPH } \end{aligned}$ | 12 | 5220 | 100\% |  | $\begin{gathered} \hline 56-60 \\ \text { MPH } \end{gathered}$ | 22 | 6154 | 100\% |
|  | $\begin{aligned} & \hline 61-65 \\ & \text { MPH } \end{aligned}$ | 2 | 5222 | 100\% |  | $\begin{aligned} & 61-65 \\ & \text { MPH } \end{aligned}$ | 2 | 6156 | 100\% |
|  | $66-70$ MPH | 0 | 5222 | 100\% |  | $\begin{aligned} & 66-70 \\ & \mathrm{MPH} \end{aligned}$ | 1 | 6157 | 100\% |


| Crabbs Branch Way Between Redland Road and Indianola Drive |  |  |  |  | Crabbs Branch Way Between Redland Road and Indianola Drive |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| O00000000 | SPEED | FREQUENCY OF VEHICLES | CUMULATIVE FREQUENCY | SPEED PERCENTILE |  | SPEED | FREQUENCY OF VEHICLES | CUMULATIVE FREQUENCY | SPEED PERCENTILE |
|  | $\begin{gathered} \hline \text { 1-5 } \\ \text { MPH } \end{gathered}$ | 627 | 627 | 9\% |  | $\begin{gathered} \hline 1-5 \\ \text { MPH } \end{gathered}$ | 228 | 228 | 3\% |
|  | $\begin{aligned} & \hline 6-10 \\ & \text { MPH } \end{aligned}$ | 25 | 652 | 10\% |  | $\begin{aligned} & \hline 6-10 \\ & \text { MPH } \end{aligned}$ | 38 | 266 | 3\% |
|  | $\begin{aligned} & 11-15 \\ & \text { MPH } \end{aligned}$ | 3 | 655 | 10\% |  | $\begin{aligned} & 11-15 \\ & \text { MPH } \\ & \hline \end{aligned}$ | 84 | 350 | 4\% |
|  | $\begin{aligned} & 16-20 \\ & \mathrm{MPH} \\ & \hline \end{aligned}$ | 8 | 663 | 10\% |  | $\begin{aligned} & \hline 16-20 \\ & \text { MPH } \\ & \hline \end{aligned}$ | 168 | 518 | 6\% |
|  | $\begin{aligned} & 21-25 \\ & \text { MPH } \\ & \hline \end{aligned}$ | 43 | 706 | 11\% |  | $\begin{aligned} & \hline 21-25 \\ & \text { MPH } \\ & \hline \end{aligned}$ | 201 | 719 | 8\% |
|  | $\begin{aligned} & \hline 26-30 \\ & \text { MPH } \end{aligned}$ | 329 | 1035 | 16\% |  | $\begin{aligned} & \hline 26-30 \\ & \text { MPH } \end{aligned}$ | 490 | 1209 | 13\% |
|  | $\begin{aligned} & \hline 31-35 \\ & \text { MPH } \end{aligned}$ | 1728 | 2763 | 42\% |  | $\begin{aligned} & \hline 31-35 \\ & \text { MPH } \\ & \hline \end{aligned}$ | 2036 | 3245 | 36\% |
|  | $\begin{aligned} & \hline 36-40 \\ & \text { MPH } \end{aligned}$ | 2547 | 5310 | 80\% |  | $\begin{aligned} & \hline 36-40 \\ & \text { MPH } \end{aligned}$ | 3814 | 7059 | 78\% |
|  | $\begin{aligned} & \text { 41-45 } \\ & \text { MPH } \end{aligned}$ | 1042 | 6352 | 96\% |  | $\begin{aligned} & \text { 41-45 } \\ & \text { MPH } \end{aligned}$ | 1625 | 8684 | 96\% |
|  | $\begin{aligned} & \hline 46-50 \\ & \text { MPH } \end{aligned}$ | 219 | 6571 | 99\% |  | $\begin{aligned} & \hline 46-50 \\ & \text { MPH } \end{aligned}$ | 344 | 9028 | 99\% |
|  | $\begin{aligned} & \hline 51-55 \\ & \text { MPH } \end{aligned}$ | 32 | 6603 | 100\% |  | $\begin{aligned} & \hline 51-55 \\ & \text { MPH } \\ & \hline \end{aligned}$ | 54 | 9082 | 100\% |
|  | $\begin{aligned} & \hline 56-60 \\ & \text { MPH } \end{aligned}$ | 12 | 6615 | 100\% |  | $\begin{aligned} & \hline 56-60 \\ & \text { MPH } \end{aligned}$ | 8 | 9090 | 100\% |
|  | $\begin{aligned} & \hline 61-65 \\ & \text { MPH } \\ & \hline \end{aligned}$ | 2 | 6617 | 100\% |  | $\begin{aligned} & \hline 61-65 \\ & \text { MPH } \\ & \hline \end{aligned}$ | 1 | 9091 | 100\% |
|  | $\begin{aligned} & 66-70 \\ & \text { MPH } \end{aligned}$ | 0 | 6617 | 100\% |  | $\begin{aligned} & \hline 66-70 \\ & \text { MPH } \\ & \hline \end{aligned}$ | 2 | 9093 | 100\% |


| Crabbs Branch Way Between Shady Grove Road and Gramercy Boulevard |  |  |  |  | Crabbs Branch Way Between Shady Grove Road and Gramercy Boulevard |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SPEED | FREQUENCY OF VEHICLES | CUMULATIVE FREQUENCY | SPEED PERCENTILE |  | SPEED | FREQUENCY OF VEHICLES | CUMULATIVE FREQUENCY | SPEED PERCENTILE |
|  | $\begin{gathered} 1-5 \\ \mathrm{MPH} \end{gathered}$ | 60 | 60 | 1\% |  | $\begin{gathered} 1-5 \\ \mathrm{MPH} \end{gathered}$ | 58 | 58 | 1\% |
|  | $\begin{aligned} & \text { 6-10 } \\ & \text { MPH } \end{aligned}$ | 3 | 63 | 1\% |  | $\begin{aligned} & \text { 6-10 } \\ & \text { MPH } \end{aligned}$ | 4 | 62 | 1\% |
|  | $\begin{aligned} & 11-15 \\ & \mathrm{MPH} \end{aligned}$ | 41 | 104 | 2\% |  | $\begin{aligned} & \text { 11-15 } \\ & \text { MPH } \end{aligned}$ | 7 | 69 | 1\% |
|  | $\begin{aligned} & 16-20 \\ & \mathrm{MPH} \end{aligned}$ | 26 | 130 | 3\% |  | $\begin{aligned} & 16-20 \\ & \mathrm{MPH} \end{aligned}$ | 39 | 108 | 2\% |
|  | $\begin{aligned} & 21-25 \\ & \text { MPH } \end{aligned}$ | 54 | 184 | 4\% |  | $\begin{aligned} & 21-25 \\ & \mathrm{MPH} \\ & \hline \end{aligned}$ | 95 | 203 | 4\% |
|  | $\begin{aligned} & 26-30 \\ & \text { MPH } \end{aligned}$ | 421 | 605 | 13\% |  | $\begin{aligned} & 26-30 \\ & \text { MPH } \end{aligned}$ | 410 | 613 | 12\% |
|  | $\begin{gathered} 31-35 \\ \text { MPH } \end{gathered}$ | 1626 | 2231 | 48\% |  | $\begin{aligned} & \text { 31-35 } \\ & \text { MPH } \end{aligned}$ | 1615 | 2228 | 42\% |
|  | $\begin{aligned} & 36-40 \\ & \mathrm{MPH} \end{aligned}$ | 1630 | 3861 | 83\% |  | $\begin{aligned} & 36-40 \\ & \text { MPH } \end{aligned}$ | 1931 | 4159 | 79\% |
|  | $\begin{aligned} & \text { 41-45 } \\ & \text { MPH } \end{aligned}$ | 617 | 4478 | 96\% |  | $\begin{aligned} & \text { 41-45 } \\ & \text { MPH } \end{aligned}$ | 838 | 4997 | 95\% |
|  | $\begin{aligned} & 46-50 \\ & \text { MPH } \end{aligned}$ | 131 | 4609 | 99\% |  | $\begin{aligned} & \text { 46-50 } \\ & \text { MPH } \end{aligned}$ | 212 | 5209 | 99\% |
|  | $\begin{gathered} 51-55 \\ \text { MPH } \end{gathered}$ | 25 | 4634 | 100\% |  | $\begin{aligned} & 51-55 \\ & \text { MPH } \end{aligned}$ | 35 | 5244 | 100\% |
|  | $\begin{aligned} & \text { 56-60 } \\ & \text { MPH } \end{aligned}$ | 6 | 4640 | 100\% |  | $\begin{aligned} & \text { 56-60 } \\ & \text { MPH } \end{aligned}$ | 6 | 5250 | 100\% |
|  | $\begin{aligned} & \hline 61-65 \\ & \text { MPH } \end{aligned}$ | 0 | 4640 | 100\% |  | $\begin{aligned} & \hline 61-65 \\ & \text { MPH } \end{aligned}$ | 1 | 5251 | 100\% |
|  | $\begin{aligned} & 66-70 \\ & \mathrm{MPH} \end{aligned}$ | 1 | 4641 | 100\% |  | $\begin{aligned} & 66-70 \\ & \text { MPH } \end{aligned}$ | 2 | 5253 | 100\% |



| Shady Grove Road between Crabbs Branch Way and Oakmont Avenue |  |  |  |  | Shady Grove Road between Crabbs Branch Way and Oakmont Avenue |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 0 \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 2 \end{aligned}$ | SPEED | FREQUENCY OF VEHICLES | CUMULATIVE FREQUENCY | SPEED PERCENTILE |  | SPEED | FREQUENCY OF VEHICLES | CUMULATIVE FREQUENCY | SPEED PERCENTILE |
|  | $\begin{gathered} 1-5 \\ \mathrm{MPH} \end{gathered}$ | 157 | 157 | 1\% |  | $\begin{gathered} \hline 1-5 \\ \mathrm{MPH} \end{gathered}$ | 114 | 114 | 1\% |
|  | $\begin{aligned} & \hline 6-10 \\ & \text { MPH } \end{aligned}$ | 22 | 179 | 2\% |  | $\begin{aligned} & \hline 6-10 \\ & \text { MPH } \end{aligned}$ | 1 | 115 | 1\% |
|  | $\begin{aligned} & 11-15 \\ & \mathrm{MPH} \end{aligned}$ | 15 | 194 | 2\% |  | $\begin{aligned} & 11-15 \\ & \mathrm{MPH} \end{aligned}$ | 2 | 117 | 1\% |
|  | $\begin{aligned} & 16-20 \\ & \text { MPH } \end{aligned}$ | 44 | 238 | 2\% |  | $\begin{aligned} & 16-20 \\ & \mathrm{MPH} \end{aligned}$ | 4 | 121 | 1\% |
|  | $\begin{aligned} & 21-25 \\ & \text { MPH } \end{aligned}$ | 86 | 324 | 3\% |  | $\begin{aligned} & 21-25 \\ & \text { MPH } \end{aligned}$ | 56 | 177 | 1\% |
|  | $\begin{aligned} & 26-30 \\ & \mathrm{MPH} \end{aligned}$ | 319 | 643 | 5\% |  | $\begin{aligned} & 26-30 \\ & \mathrm{MPH} \end{aligned}$ | 290 | 467 | 3\% |
|  | $\begin{aligned} & 31-35 \\ & \mathrm{MPH} \end{aligned}$ | 1200 | 1843 | 16\% |  | $\begin{aligned} & \hline 31-35 \\ & \text { MPH } \end{aligned}$ | 1685 | 2152 | 15\% |
|  | $\begin{aligned} & 36-40 \\ & \text { MPH } \end{aligned}$ | 3402 | 5245 | 44\% |  | $\begin{gathered} 36-40 \\ \mathrm{MPH} \end{gathered}$ | 6092 | 8244 | 58\% |
|  | $\begin{gathered} \hline 41-45 \\ \text { MPH } \end{gathered}$ | 3985 | 9230 | 78\% |  | $\begin{gathered} \hline 41-45 \\ \text { MPH } \end{gathered}$ | 3779 | 12023 | 85\% |
|  | $\begin{aligned} & 46-50 \\ & \text { MPH } \end{aligned}$ | 1911 | 11141 | 94\% |  | $\begin{gathered} 46-50 \\ \text { MPH } \end{gathered}$ | 1522 | 13545 | 96\% |
|  | $\begin{aligned} & 51-55 \\ & \text { MPH } \end{aligned}$ | 512 | 11653 | 99\% |  | $\begin{aligned} & \text { 51-55 } \\ & \text { MPH } \end{aligned}$ | 405 | 13950 | 99\% |
|  | $\begin{aligned} & 56-60 \\ & \text { MPH } \end{aligned}$ | 123 | 11776 | 100\% |  | $\begin{aligned} & 56-60 \\ & \mathrm{MPH} \end{aligned}$ | 117 | 14067 | 100\% |
|  | $61-65$ $\mathrm{MPH}$ | 25 | 11801 | 100\% |  | $\begin{aligned} & \hline 61-65 \\ & \text { MPH } \\ & \hline \end{aligned}$ | 38 | 14105 | 100\% |
|  | $66-70$ MPH | 10 | 11811 | 100\% |  | $\begin{aligned} & 66-70 \\ & \mathrm{MPH} \end{aligned}$ | 11 | 14116 | 100\% |

The Montgomery County Department of Transportation (MCDOT) sets target speeds for roadways and ideally roadway design supports a selected target speed. The County's Urban Road Code Policy, which dictates that roads in defined urban areas must have a target speed of 25 miles per hour, was enacted after each of the studied roads in the Plan area were constructed (excluding the rebuilt portion of Crabbs Branch Way between Shady Grove Road and the Crabbs Branch Way bridge points south). Three of the six locations where spot speed information was collected fall within the Shady Grove Urban Road Code boundary. Today, posted speeds do not align with the policy because the current roadways support higher-speeds, as demonstrated by the speed percentile breakdown in Table 7 above. Posted road speeds for each of the locations is shown in Table 8 below. Table 8 also provides the percentage of drivers traveling above the posted speed limit at the collection locations.

Table 8 - Percent of Drivers Traveling Above the Posted Speed Limit

| Location | Posted <br> Speed | Percent <br> Traveling Above <br> Posted Speed <br> Limit <br> Shady Grove Road |
| :--- | :--- | :--- |
| Shady Grove Road between Briardale Road and Epsilon Drive | 45 miles <br> per hour | $48 \%$ northbound <br> $48 \%$ southbound |
| Shady Grove Road between Oakmont and Crabbs Branch Way | 40 miles <br> per hour | $56 \%$ northbound <br> $42 \%$ southbound |
| Crabbs Branch Way | 35 miles <br> per hour | $52 \%$ northbound <br> $58 \%$ southbound |
| Crabbs Branch Way between Shady Grove Road and Gramercy Boulevard | 35 miles <br> per hour | $62 \%$ northbound <br> $84 \%$ southbound |
| Crabbs Branch Way between Gramercy Boulevard and Redland Road | 35 miles <br> per hour | $58 \%$ northbound <br> $64 \%$ southbound |
| Crabbs Branch Way between Redland Road and Indianola Drive | 35 miles <br> per hour | $46 \%$ northbound <br> $60 \%$ southbound |
| Crabbs Branch Way between Indianola Drive and Monona Drive |  |  |

The Vision Zero Improvements Summary Table (Table 9) in this Appendix include measures that aim to reduce speeds through engineering and enforcement strategies.

## ii. Crash Analysis

In support of the effort, Planning staff analyzed crashes between January 2015 and May 2019. Department staff compiled geospatial crash data from the State, County, and proximate municipal governments and eliminated duplicate incident records. Crashes were then mapped based on coordinates in the geospatial record; however, staff notes that the reliability is not perfect. Sometimes geographic coordinates specify where a record is created rather than where a crash occurs. Where possible, geographic coordinates were cleaned to better represent the location of the crash. Records that were identified as occurring on private property (i.e. parking lots, garages, etc.) were removed from the dataset. Figure 17 depicts the locations of crashes based on crash type, following data clean-up.

1,347 crashes occurred in the Planning Area during the sample period. Approximately 2.45 percent (33) of these crashes resulted in a severe injury or fatality, and 3.79 percent (51) involved a non-motorist-
the network's most vulnerable user group. Six of the reported non-motorist crashes resulted in a severe injury or fatality. Three fatalities occurred in the Sector Plan Area between January 2015 and May 2019.

Figure 17 - Plan Area Crashes


To further understand crash trends, staff worked with the Montgomery County Police Department (MCPD) to obtain crash reports and movement diagrams for all crashes that resulted in a severe injury or fatality. Based on geospatial information, staff had access to 72 specific record identification numbers and requested each of the 72 records. The Montgomery County Police Department was able to provide 65 of the 72 requested records. Staff used these reports to strategically evaluate the Plan Area, using information in the geospatial database where actual records were not provided. While previous crashes are not necessarily predicative of future crashes, historical information can be used to determine if trends are present, or to assess movements that frequently result in crashes. Major findings include:

- Right-turn vehicle movements accounted for 31 percent of non-motorist crashes ${ }^{1}$. Hotspots included Crabbs Branch Way \& Redland Road, Shady Grove Road \& Crabbs Branch Way, and turns into commercial driveways on MD 355.
- All but one of the right-turn non-motorist crashes at intersections (i.e. not driveways) note that vehicles failed to yield to a non-motorist after coming to a stop. This suggests targeted rightturn on red restrictions may be appropriate.
- Left turning movements accounted for 23 percent of non-motorist crashes ${ }^{2}$. Hotspots included Crabbs Branch Way \& Redland Road, Redland Road \& Somerville Drive, MD 355 \& King Farm Boulevard/King Farm Boulevard Extended, and MD 355 and Redland Road.
- Based on the crash records, it appears that reassessing the necessity of permissive lefts could improve safety for non-motorists at the locations listed above.
- 48 percent of crashes resulting in a severe or fatality injury resulted from a left-turn movement. Hotspots included MD 355 \& King Farm Boulevard/King Farm Boulevard Extended, Shady Grove Road \& Oakmont Avenue, Shady Grove Road \& Epsilon Avenue
- Excessive speeds contributed to both non-motorist and severe and fatal crashes on segments of MD 355, Shady Grove Road, Crabbs Branch Way, Redland Road, and Gude Drive.


## iii. Prioritized List of Vision Zero Improvements

Staff used the walkshop feedback, spot speed studies, crash analysis, and a qualitative review of the Plan area to develop a package of Vision Zero Improvements that could benefit the Plan Area. These improvements are rated as "high," "medium," and "low" priority based on professional judgement and ease of implementation. Table 9 describe these improvements below. Some of the proposed improvements could have the potential to impact vehicular capacity and were modeled in Synchro using existing volumes to assess impacts in the event the package of improvements were to be made in the near-term.

[^1]Table 9 - Prioritized List of Vision Zero Improvements

| Location | Description | Priority | Within <br> Current <br> High- <br> Injury <br> Network | Capacity Impacts Modeled? |
| :---: | :---: | :---: | :---: | :---: |
| MD 355 <br> through the Extent of the Plan Area | Provide a buffer between the sidewalk and the cartway of no less than $5^{\prime}$ (ideally $6^{\prime}$ for tree panels); where landscape panels cannot be accommodated, provide vertical separation (e.g. jersey barrier; sidewalk, etc.) Ideally, proposals for vertical separation should integrate well with the character of the urban environment. | High | Yes | No |
| MD 355 \& King <br> Farm <br> Boulevard/Kin <br> g Farm <br> Boulevard <br> Extended | Implement a Leading Pedestrian Interval for the north and south intersection legs. | High | Yes | Yes |
| MD 355 \& King <br> Farm <br> Boulevard/Kin <br> g Farm <br> Boulevard <br> Extended | Add pedestrian recall for phases across MD 355 for the morning peak, lunch hour, and evening peak hour. | High | Yes | Yes |
| MD 355 \& King <br> Farm <br> Boulevard/Kin <br> g Farm <br> Boulevard <br> Extended | Remove protected/permissive program and potentially increase the left turn phases to accommodate turning traffic during the morning peak hour; if protected/permissive phasing is to be retained, convert the green ball into flashing yellow arrow and add "YIELD TO PEDESTRIAN" signage. | High | Yes | Yes |
| MD 355 \& King <br> Farm <br> Boulevard/Kin <br> g Farm <br> Boulevard <br> Extended | Add right turn on red restrictions at all intersection legs. | High | Yes | Yes |
| MD 355 \& King <br> Farm <br> Boulevard/Kin <br> g Farm <br> Boulevard <br> Extended | Tighten the curb radius on southern leg of the intersection and straighten the crosswalk. Extend the median beyond the crosswalk (i.e. provide a median nose). | Medium | Yes | No |


| Location | Description | Priority | Within <br> Current <br> High- <br> Injury <br> Network | Capacity Impacts Modeled? |
| :---: | :---: | :---: | :---: | :---: |
| MD 355 \& King Farm <br> Boulevard/Kin g Farm <br> Boulevard <br> Extended | Reconstruct curb ramps on northeast and southeast legs of intersection, locating them perpendicular to the curb. Pull back eastwest crossing over MD-355, including stop bar to straighten crosswalk, and cut through the median, aligning with new curb ramps. | Medium | Yes | No |
| MD 355 \& King Farm Boulevard/Kin g Farm Boulevard Extended | Tighten curb radius on northern leg of intersection with concrete curb extension. | Medium | Yes | No |
| MD 355 \& King Farm Boulevard/Kin g Farm Boulevard Extended | Tighten curb radius on the southern leg in the intersection. | Medium | Yes | No |
| MD 355 \& King Farm <br> Boulevard/Kin g Farm Boulevard Extended | Raise the grade of intersection, tabling it for pedestrian visibility and establishing it as main gateway into the Metro Station for both pedestrians and future transit. | Low | Yes | No |
|  <br> Redland Road | Provide a Leading Pedestrian Interval for the north and south intersection legs. | High | Yes | Yes |
|  <br> Redland Road | Add pedestrian recall for phases across MD 355 for morning peak, lunchtime, and evening peak hour crossings. | High | Yes | Yes |
|  <br> Redland Road | Remove the protected/permissive program for all legs and potentially allow only protected lefts at all intersection legs; if permissive phasing is to be retained, convert to a flashing yellow arrow. | High | Yes | Yes |


| Location | Description | Priority | Within <br> Current <br> High- <br> Injury <br> Network | Capacity <br> Impacts <br> Modeled? |
| :---: | :---: | :---: | :---: | :---: |
|  <br> Redland Road | Add right turn on red restrictions at all intersection legs. | High | Yes | Yes |
|  <br> Redland Road | Provide median noses on MD 355 to tighten left turns. Consider mountable nose to avoid conflicts with large vehicles and trucks. | Medium | Yes | No |
|  <br> Redland Road | Tighten the curb radius at the western leg of the intersection (Redland Road, King Farm Side) to slow right turns. | Medium | Yes | No |
|  <br> Ridgemont <br> Road/Transfer <br> Facility <br> Entrance | Add right turn on red restrictions primarily for east and west intersection legs; consider restrictions for all legs of intersection. At minimum, consider "Yield to Pedestrian Signage" if no restrictions are added. | High | Yes | Yes |
|  <br> Ridgemont <br> Road/Transfer <br> Facility <br> Entrance | Covert the green ball to a flashing yellow arrow for permissive lefts. | High | Yes | No |
|  <br> Ridgemont <br> Road/Transfer <br> Facility <br> Entrance | Add noses to all intersection legs (or markings) to slow turns. | Medium | Yes | No |
| MD 355 - <br> Segment between Gude <br> \& Redland | Review curb cut permits along MD 355 for properties with multiple driveway points. Revoke permits where duplicative access points exist today. | High | Yes | No |
| MD 355 - <br> Segment between Gude \& Redland | Raise the grade of the sidewalk to provide a consistent flush surface across all driveway aprons. This will require reconstruction of driveway aprons. | Medium | Yes | No |
| Redland Road \& Crabbs Branch Way | Revise the existing right turn on red restriction to be at all times; strongly consider adding right turn on red restrictions at all intersection legs. At minimum, consider "Yield to Pedestrian Signage" if no restriction times are not amended and added. | High | Yes | Yes |
| Redland Road \& Crabbs Branch Way | Provide a flashing yellow arrow (rather than green ball) for all permissive movements. | High | Yes | No |


| Location | Description | Priority | Within Current HighInjury Network | Capacity <br> Impacts <br> Modeled? |
| :---: | :---: | :---: | :---: | :---: |
| Redland Road \& Crabbs Branch Way | Add a vegetated center median extending through the southern intersection leg's crosswalk for pedestrian refuge on Crabbs Branch Way, to continue into center turn lane (see section in Plan); restripe NB Crabbs Branch Way lanes to be left only (1), through (1), and shared through right (1). | High | Yes | Yes |
| Redland Road \& Crabbs Branch Way | Add a vegetated center median on northern leg of Crabbs Branch Way in the location of existing left turns to slow traffic and provide for pedestrian refuge. Restripe SB Crabbs Branch Way to become left only (1) and shared through-right (1) OR provide dynamic signage to be left only at certain periods of day and shared through-lefts at other periods. | High | Yes | Yes |
| Redland Road \& Crabbs Branch Way | Provide an automatic speed enforcement camera in the SB direction on Crabbs Branch Way just south of the bridge. Consider a NB speed enforcement camera as well. Add safe speed corridor signage. | High | Yes | No |
| Redland Road \& Somerville Drive | Add a Leading Pedestrian Interval for the north and south legs of the intersection. | High | No | Yes |
| Redland Road \& Somerville Drive | Add pedestrian recall to all phases, at least during morning, lunch, and afternoon peak hours. Staff's data collection suggests that lunch hour shows the highest level of demand for pedestrians. | High | No | Yes |
| Redland Road \& Somerville Drive | Provide "Left-Turn Yield to Pedestrians" signage; consider removal of permissive lefts if no LPI can be provided | Low | No | No |
| Redland Road \& Somerville Drive | Provide curb extensions on the eastern leg (WB) of Somerville in the parking lanes, providing tighter turning radii. Convert WB leg into one-lane shared-through right. | Low | No | Yes |
| Shady Grove Road \& Crabbs Branch Way | Add right turn on red restrictions at all legs, particularly emphasizing the NB approach (south leg of Crabbs Branch Way). | High | No | Yes |


| Location | Description | Priority | Within <br> Current <br> High- <br> Injury <br> Network | Capacity Impacts Modeled? |
| :---: | :---: | :---: | :---: | :---: |
| Shady Grove Road \& Crabbs Branch Way | Provide a leading pedestrian interval on phases that facilitate crossing Shady Grove Road, particularly the western leg. | High | No | Yes, west crosswalk only |
| Shady Grove Road \& Crabbs Branch Way | Add pedestrian recall to the mainline phases for morning peak, lunchtime, and evening peak hour crossings. | Medium | No | Yes |
| Shady Grove Road \& Crabbs Branch Way | Facilitate a photometric study and determine whether lighting at the intersection and adjoining leg segments is sufficient. | Medium | No | No |
| Redland Road <br> - Segment <br> Between MD <br>  <br> Yellowstone <br> Way | Provide an automatic speed enforcement camera in the EB and WB sections of Redland Road. Add safe speed corridor signage. The camera should be placed in a manner that enforces speed compliance down the grade of Redland Road toward the Metro Station entrance. | High | No | No |
| Redland Road <br> - Segment <br> Between MD <br>  <br> Yellowstone <br> Way | Remove the NB sidewalk concrete between MD 355 and Somerville Drive and add 5' vegetated planting strip along Redland Road to create buffer between pedestrians and traffic. | Medium | No | No |
| Crabbs Branch <br> Way- <br> Segment <br> between <br> Redland Road <br> a\& Indianola <br> Avenue | Convert the existing section of Crabbs Branch Way into a four lane section, replacing the turn lane with a center median (see section in Plan). | High | Yes | Yes |
| Crabbs Branch <br> Way- <br> Segment between <br> Redland Road <br> \& Indianola <br> Avenue | Consistent with Urban Road Code policy, reduce posted speeds from 35 miles per hour to 25 miles per hour and consider interventions to support the required speed limit. | High | Yes | Yes |


| Location | Description | Within <br> Current <br> High- <br> Injury <br> Network | Capacity <br> Impacts <br> Modeled? |  |
| :--- | :--- | :---: | :---: | :---: |
| Crabbs Branch <br> Way- <br> Segment <br> between <br> Redland Road <br> \& Indianola <br> Avenue | Provide an automatic speed enforcement <br> camera in the SB direction on Crabbs Branch <br> Way just south of the bridge. Consider NB <br> speed enforcement camera as well. Add <br> safe speed corridor signage. | High | Yes | Yes |
| Crabbs Branch <br>  <br> Indianola <br> Avenue | Increase the "all red" time at the <br> intersection to prevent conflicts along <br> segments with high speeds and poor <br> compliance. | High | Yes | Yes |
| Crabbs Branch <br>  <br> Indianola <br> Avenue | Install red light cameras at the intersection. | High | Yes | Yes |
| Crabbs Branch <br>  <br> Indianola <br> Avenue | Reconstruct the curb ramps, providing two <br> curb ramps at each intersection corner. The <br> curb radii may need to be tightened to <br> support two ramps at each corner. | Medium | Yes | No |
| Shady Grove | Lower the posted speed to 35 miles per <br> hour; provide a section with more narrow <br> lane widths to reduce speeds (see section in <br> Plan). | High | Yes | Yes |
| Road - <br> Segment <br> between <br> Crabbs Branch <br> Way \& Epsilon <br> Drive | High |  |  |  |
| Shady Grove <br> Road - <br> Segment <br> between <br> Crabbs Branch <br> Way \& Epsilon <br> Drive | Provide an automatic speed enforcement <br> camera in the SB direction on Crabbs Branch <br> Way just south of the bridge. Consider NB <br> speed enforcement camera as well. Add <br> safe speed corridor signage. | Yes | Yes |  |


| Location | Description | Priority | Within <br> Current <br> High- <br> Injury <br> Network | Capacity <br> Impacts <br> Modeled? |
| :---: | :---: | :---: | :---: | :---: |
| 1-370/Metro <br>  <br> Shady Grove <br> Road <br> Interchange | Remove the channelized rights to enter and exit the interchange along the southern side of the intersection to support a safe, continuous bicycle facility. Prohibit right turn on red from new turn pockets. | High | Yes | No |
| I-370/Metro <br>  <br> Shady Grove <br> Road <br> Interchange | Remove the channelization from the EB I370 off ramp to Shady Grove Road (WB) as there is very limited merge space and more than enough throat in along the ramp to support queues. | Medium | Yes | No |
| Crabbs Branch Way/Cecil Street \& Gude Drive | Implement right turn on red restrictions from Cecil onto Gude due to poor visibility and high pedestrian and bicyclist volumes over Carl Henn Millennium Trail. Remove existing shrub/vegetation impacting visibility. | Medium | No | Yes |
| Crabbs Branch Way/Cecil Street \& Gude Drive | Pull the existing median on the east leg of the intersection (WB) through the crosswalk/provide median nose to serve as pedestrian refuge. | Medium | No | No |
| Crabbs Branch Way/Cecil Street \& Gude Drive | Provide a median in location of painted division on the western intersection leg (EB) approach. | Medium | No | No |
| Shady Grove Road \& Epsilon Drive/Tupelo Drive | Provide a Leading Pedestrian Interval over Shady Grove Road | High | No | No |
| Shady Grove Road \& Epsilon Drive/Tupelo Drive | Pull the existing median through the crosswalk to provide location for pedestrian refuge, or provide median nose beyond the crosswalk. | High | No | No |
|  <br> Briardale Road | Provide a Leading Pedestrian Interval for phases that facilitate crossings of Shady Grove Road. | High | No | No |


| Location | Description | Within <br> Current <br> High- <br> Injury <br> Network | Capacity <br> Impacts <br> Modeled? |  |
| :--- | :--- | :---: | :---: | :---: |
| MD 355 \& WB <br> I-370 WB On- <br> Ramp | Provide a vertical element (e.g. flexiposts) in <br> extent of the triangular striping between <br> the on-ramp and roadway to slow traffic <br> entering the ramp through the pedestrian <br> crossing OR consider curb extension(s) to <br> reduce the crossing distance and improve <br> visibility of pedestrians crossing the ramp. | Medium | Yes | No |

## iv. Synchro Modeling Results for Vision Zero Improvements

Many of the improvements expected to impact capacity were modeled in Synchro. Because the County intends to eliminate severe injuries and fatalities by 2030, existing volumes were employed to see how these improvements would impact the Planning Area if they were to be immediately implemented. Table 10 shows the magnitude of impact on average vehicle delay.

Table 10 - Impact of Modeled Vision Zero Improvements on Existing Vehicular Capacity

|  |  | Existing Conditions (Synchro) |  | Existing Conditions Vision Zero <br> Improvements (Synchro) |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Intersection | Delay <br> Standard | AM Delay <br> (avg. sec/veh) | PM Delay <br> (avg. sec/veh) | AM Delay <br> (avg. sec/veh) | PM Delay <br> (avg. sec/veh) |
| MD 355 \& Redland Road | 120 | 35.6 | 53.3 | 63 | 109.1 |
| MD 355 \& Gude Drive | 63 | 95.8 | 71 | 96 | 70.9 |
|  <br> Redland Road | 120 | 47.6 | 45.9 | 106.3 | 76.9 |
|  <br> Oakmont Avenue | 120 | 31.2 | 31.3 | 35.5 | 33.3 |
|  <br> Shady Grove Road | 120 | 38.2 | 48.2 | 80.6 | 61.1 |
| MD 355 \& Shady Grove <br> Road | 120 | 64.6 | 92.3 | 65.7 | 97.3 |
|  <br> Indianola Drive | 120 | 16.1 | 15.1 | 24.7 | 17.7 |
|  <br> Gude Drive | 59 | 37.9 | 44.5 | 39.3 | 44.8 |
| MD 355 \& King Farm <br> Boulevard | 120 | 14.5 | 65.2 | 23.8 | 76.4 |
| MD 355 \& Ridgemont <br> Avenue | 120 | 6.6 | 20.8 | 22.2 | 20.5 |
| MD 355 \& Watkins Pond <br> Boulevard/Indianola <br> Drive | 63 | 11.4 |  |  |  |

Table 10 Continued

|  |  | Existing Conditions (Synchro) |  | Existing Conditions Vision Zero <br> Improvements (Synchro) |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Intersection | Delay <br> Standard | AM Delay <br> (avg. sec/veh) | PM Delay <br> (avg. sec/veh) | AM Delay <br> (avg. sec/veh) | PM Delay <br> (avg. sec/veh) |
| Gaither Road \& King Farm <br> Boulevard | 63 | 18.2 | 21.3 | 18.2 | 21.3 |
| Gaither Road \& Piccard <br> Drive | 63 | 7.1 | 7.7 | 7.1 | 7.7 |
| Gude Drive \& Watkins <br> Pond Boulevard | 63 | 6.7 | 6.9 | 6.7 | 6.9 |
| Gude Drive \& Gaither <br> Road | 63 | 13.2 | 16.3 | 13.2 | 16.3 |
|  <br> Redland Road | 59 | 33.8 | 16.5 | 33.5 | 17.8 |
|  <br> Gaither Road | 63 | 43.8 | 55.6 | 44.6 | 56.2 |
| Redland Road \& Shady <br> Grove Metro | 120 | 17.9 | 30.7 | 16 | 37.2 |
|  <br> Somerville Drive | 120 | 12.2 | 16.3 | 15.9 | 22.7 |

Table 10 demonstrates that, generally speaking, average intersection is delay is anticipated to increase with the additional on the modeled Vision Zero Improvements. This is because many of the suggested improvements reallocate the capacity of a given turning or through movement to an associated movement, increased walk time, or increased stop time. Vision Zero requires a higher tolerance for traffic congestion to achieve increased safety for all road users and to eliminate traffic related fatalities and severe injuries. Staff notes that these improvements were modeled using Synchro, which does not capture queuing and spillback.

## 2. Consolidated Information on the Corridor Cities Transitway and MD 355 BRT

## A. Corridor Cities Transitway

The Corridor Cities Transitway (CCT) is a transit guideway alignment, currently assumed to be bus service, which conceptually originated in 1970 when the Washington Metropolitan Area Transit Authority (WMATA) completed a sketch planning effort that assessed the potential alignment for transit service between Shady Grove and Metropolitan Grove. In 1990, the Maryland Department of Transportation identified significant transit demand in the corridor (Statewide Commuter Assistance Study) and Montgomery Planning completed a study of alternative alignments to serve demand (I-270 Corridor Cities Transit Easement Study). After years of study, the Federal Highway Administration (FHWA) and the Federal Transit Administration (FTA) released a Draft Environmental Impact Statement (DEIS) for its I-270/US 15 Multi-Modal Corridor Study, which attempted to organize piecemeal transit planning and highway planning efforts in the corridor. In 2009, FHWA and FTA undertook an Alternatives Analysis and Environmental Assessment (AA/EA) to study additional alignments and options for both roadways and transit. While this effort addressed both modes, after the release of a supplemental AA/EA in 2010, in 2011 FHWA and FTA concluded that the CCT had "independent utility" from the studied roadway elements. This allowed studied highway and transit concepts to advance independently.

In 2010, the Planning Department's Great Seneca Science Corridor Plan was completed, setting in the place the mechanism to obtain land and easements to support the transitway. After additional study by the Maryland Department of Transportation Maryland Transit Authority (MTA) in 2011, the State announced the locally-preferred alignment and mode for the corridor in 2012 and officially split the route into two "phases" - a southern phase (phase 1) serving points within the Great Seneca Science Corridor between the Metropolitan Grove MARC Station and WMATA's Shady Grove Metrorail Station, and a northern phase (phase 2) serving points north to the COMSAT site just south of Clarksburg. The first phase, as documented in the Great Seneca Science Corridor Master Plan, is shown in Figure 18.

In 2017, the Maryland Transit Authority released another DEIS and 30 percent design drawings for phase 1 of the CCT. As of this writing, no additional funding commitments have been made to advance the $\$ 718$ million project (in 2016 dollars). The 2017 DEIS projected that the bus line would facilitate 30,429 person trips per day. Service between Metropolitan Grove and the Shady Grove Metro Station would take roughly 42 minutes (excluding a loop through the Universities at Shady Grove) at 15-minute headways.

The Shady Grove Sector Plan Minor Master Plan Amendment supports the continued pursuit of the CCT to not only improve access to the Metro Station, but also improve access to employment centers points west for future residents of the Plan area. Transfer points should be located as close to the Shady Grove Metrorail Station as possible. Alternative alignments for the CCT may include considering alternative alignments for the CCT, will be further explored in Corridor Forward: The I-270 Transit Plan.

Figure 18 - Phase 1 of the Corridor Cities Transitway - Great Seneca Sciences Corridor Master Plan


The CCT's first phase will be from the Shady Grove Metro Station to the Metropolitan Grove MARC Station. The second phase would extend the line from Metropolitan Grove north to Germantown and Clarksburg. The CCT route and design will not only connect people and places, but its stations will be the focal point of new development in the Corridor.

The Planning Board approved the Countywide Transit Corridors Functional Master Plan in 2013. This document recommends two BRT lines along MD 355 to provide service between Clarksburg and Bethesda. The northern and southern line meet at a transfer point in Rockville.

Beginning in 2015, the Montgomery County Department of Transportation (MCDOT) advanced the project through the creation of a Purpose and Need Statement and an assessment of Conceptual Alternatives. MCDOT initiated an Alternatives Analysis in 2018, which ran concurrently with the Shady Grove Sector Plan Minor Master Plan Amendment's planning process. At the time of this writing, an alternative has not been selected. As such, dedicated curb-running and median-running options were modeled during the master planning process. Initially, median-running options assumed two dedicated BRT lanes on MD 355; however, later scenarios were adjusted to assume one peak-hour BRT lane running through the Plan Area.

A draft of the Alternatives Analysis Summary Report was made available in October 2019. The study splits the corridor into seven different segments in order to develop conceptual sections. The segment running through the Plan area begins points south at College Parkway in Rockville and terminates points north at Summit Avenue in Gaithersburg. The three dedicated alternatives retained in the study are alternative " $B$," which includes two median running BRT lanes, "B Modified," which includes one median BRT lane that could be fixed or reversible through the plan area, and alternative "C," which provides two curb running lanes. Figure 19 and 20 below show alternatives "B Modified" and "C."

Figure 19 - Option B Modified, "Phase 2 Corridor Summary Report," October Draft


Figure 20 - Option C, "Phase 2 Corridor Summary Report," October Draft


The Planning Board reviewed a Mandatory Referral for the MD 355 BRT in July 2019, recommending median-running option $B$, which provides two dedicated lanes. Council subsequently reviewed the options but did not make a final determination on an alternative. While option "B Modified" has not officially been selected, at the time of this writing, this option appears to be highly advantageous given the operational performance and reliability benefits of a median-running system at lower capital and operating costs when compared to alternative " $B$," which provides two dedicated lanes. Option "B Modified" is estimated to cost $\$ 820$ million to construct and $\$ 4.43$ cents per rider to operate annually. ${ }^{3}$ Table 11 summarizes various measures of effectiveness across the four studied alternatives. Because option "B Modified" was not initially modeled by MCDOT, outputs for Alternative "B" and "B Modified" are reported together.

[^2]The Shady Grove Sector Plan Minor Master Plan Amendment recommends that the MD 355 BRT interface with WMATA's Shady Grove Metrorail Station to the closest extent possible; however, recognizes that it may be difficult for the BRT to do this directly under current conditions. In current modeling runs, MCDOT assumes that the BRT will operate in mixed traffic with a station at Somerville Drive and Metro Access Loop Road. The Shady Grove Sector Plan Minor Master Plan Amendment proposes illustrative sections of Somerville Drive, Redland Road, and King Farm Boulevard Extended that allow the BRT to continue operating in a dedicated lane when leaving the MD 355 Corridor.

Table 11-2040 Ridership and Traffic Comparison, "Phase 2 Corridor Summary Report," October Draft

| Comparison Factors | No-Build Alternative | TSM <br> Alternative | Alternative A | Alternative B and B Modified | Alternative C |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Total Daily Transit Boardings by Alternative | 75,300 | 83,100 | 87,400 | 91,900 | 89,400 |
| New transit riders along the corridor | 0 | 4,400 | 8,900 | 9,400 | 8,900 |
| Transit mode share along the corridor |  |  |  |  |  |
| From Study Area | 8.3\% | 8.4\% | 9.0\% | 9.0\% | 9.0\% |
| To Study Area | 6.6\% | 6.7\% | 7.3\% | 7.2\% | 7.2\% |
| From Montgomery County | 8.3\% | 8.3\% | 8.8\% | 8.7\% | 8.6\% |
| Transit travel time between key origin-destination pairs |  |  |  |  |  |
| Clarksburg to Shady Grove | 50 | 56 | 62 | 50 | 46 |
| Clarksburg to White Flint | 90 | 90 | 77 | 79 | 61 |
| Germantown to Shady Grove | 44 | 42 | 40 | 33 | 35 |
| Lakeforest to Rockville | 43 | 43 | 38 | 29 | 31 |
| Lakeforest to Bethesda | 53 | 53 | 46 | 42 | 43 |
| White Flint to Bethesda | 30 | 26 | 23 | 21 | 23 |
| Rockville to Bethesda | 57 | 42 | 40 | 36 | 39 |
| Transit travel time reliability along the corridor (Percent of BRT Vehicles Separated from Vehicle in Front of It by Between 7 and 13 Minutes at Cedar Avenue) - AM Peak Period |  |  |  |  |  |
| FLASH 2: Lakeforest to Grosvenor Metrorail Station | N/A | N/A | 100\% | 100\% | 100\% |
| FLASH 1G: Germantown <br> Transit Center to Montgomery College - Rockville Campus | N/A | N/A | 83\% | 96\% | 81\% |
| FLASH 1C: Clarksburg to Montgomery College Rockville Campus | $N / A$ | $\mathrm{N} / \mathrm{A}$ | 84\% | 82\% | 95\% |
| Transit travel time reliability along the corridor (Percent of BRT Vehicles Separated from Vehicle in Front of It by Between 7 and 13 Minutes at Cedar Avenue) - PM Peak Period |  |  |  |  |  |
| FLASH 2: Lakeforest to Grosvenor Metrorail Station | N/A | N/A | 92\% | 87\% | 93\% |
| FLASH 1G: Germantown Transit Center to Montgomery College - Rockville Campus | N/A | N/A | 82\% | 94\% | 88\% |
| FLASH 1C: Clarksburg to Montgomery College Rockville Campus | N/A | N/A | 64\% | 96\% | 83\% |
| Peak Period (AM \& PM) Weekday Person Throughput |  |  |  |  |  |
| 1 - Cedar Lane | 32,800 | 32,700 | 33,100 | 31,800 | 32,500 |
| 2 - Twinbrook Parkway | 32,300 | 32,500 | 33,500 | 33,700 | 33,400 |
| 3 - N. Washington Street | 27,800 | 28,500 | 28,100 | 29,700 | 28,300 |
| 4 - Shady Grove Road | 30,800 | 31,600 | 31,300 | 35,300 | 32,100 |
| 5 - Chestnut Street | 27,200 | 27,900 | 27,900 | 31,700 | 28,700 |

Table 11 Continued - 2040 Ridership and Traffic Comparison, "Phase $\mathbf{2}$ Corridor Summary Report," October Draft (Continued)

| Comparison Factors |  | No-Build Alternative | TSM <br> Alternative | Alternative A | Alternative B and B Modified | Alternative C |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 - Watkins Mill Road |  | 25,900 | 26,100 | 27,100 | 29,000 | 27,900 |
| 7 - Ridge Road |  | 19,700 | 20,400 | 20,300 | 20,700 | 22,800 |
| Number of jobs accessible by transit within 30,45 , and 60 minutes for households in the corridor | $\begin{aligned} & 30 \\ & 45 \\ & 60 \end{aligned}$ | $\begin{aligned} & 130,900 \\ & 395,500 \\ & 832,300 \end{aligned}$ | $\begin{aligned} & 131,100 \\ & 397,100 \\ & 836,100 \end{aligned}$ | $\begin{aligned} & 139,400 \\ & 414,100 \\ & 864,900 \end{aligned}$ | $\begin{aligned} & 140,300 \\ & 414,400 \\ & 860,600 \end{aligned}$ | $\begin{aligned} & 139,700 \\ & 414,700 \\ & 863,000 \end{aligned}$ |
| Number of activity centers accessible by transit within 30,45 , and 60 minutes for households in the corridor | 30 45 60 | $\begin{gathered} 5.7 \\ 17.4 \\ 38.5 \end{gathered}$ | $\begin{gathered} 5.7 \\ 17.4 \\ 38.7 \end{gathered}$ | $\begin{gathered} 6.4 \\ 18.1 \\ 38.6 \end{gathered}$ | $\begin{gathered} 6.5 \\ 18.2 \\ 38.3 \end{gathered}$ | 6.4 18.2 <br> 38.6 |
| Number of households that can reach jobs in the corridor by transit within 30 , 45 , and 60 minutes | 30 45 60 | $\begin{gathered} 98,400 \\ 260,800 \\ 547,800 \end{gathered}$ | $\begin{gathered} 94,400 \\ 261,100 \\ 549,400 \end{gathered}$ | $\begin{aligned} & 98,400 \\ & 268,900 \\ & 562,000 \end{aligned}$ | $\begin{gathered} 99,900 \\ 269,300 \\ 560,100 \end{gathered}$ | $\begin{gathered} 98,900 \\ 267,700 \\ 559,700 \end{gathered}$ |
| Number of households that can reach activity centers in the corridor by transit within 30, 45 or 60 minutes | 30 45 60 | $\begin{gathered} 387,500 \\ 789,700 \\ 1,383,900 \end{gathered}$ | $\begin{gathered} 385,100 \\ 789,100 \\ 1,382,400 \end{gathered}$ | $\begin{gathered} 385,100 \\ 793,300 \\ 1,391,000 \end{gathered}$ | $\begin{gathered} 385,100 \\ 793,700 \\ 1,381,300 \end{gathered}$ | $\begin{gathered} 385,100 \\ 793,300 \\ 1,383,900 \end{gathered}$ |
| Number of households that have access to BRT stations within $1 / 2$ mile network distance |  | 20,100 | 26,600 | 27,000 | 27,100 | 26,600 |
| Number of miles of LOS E or F along the corridor |  |  |  |  |  |  |
| Northbound |  | 2.6 | 2.7 | 2.7 | 3 | 3.2 |
| Southbound |  | 7.6 | 9.4 | 8.1 | 8.4 | 5.9 |
| Average Person Travel Delay (in minutes) (AM/PM) |  | 3.0/3.0 | 3.0/3.0 | 3.0/3.6 | 3.6/3.6 | 3.6/3.6 |
| Number of Intersections Operating at LOS E or F in Segments 1 through 6 (AM/PM) |  | 16/14 | 17/14 | 13/14 | 20/24 | 15/23 |

The Plan also supports the continued pursuit of an infill MD 355 BRT station at MD 355 and Indianola Avenue. MCDOT's June 2019 "Phase 2 Station Screening Report" notes that the station has siting location challenges due to existing roadway geometry and, at 450 daily projected riders, failed to meet the 500 -rider threshold. Because the station was close to the 500 -rider threshold, the station was retained as an option to reassess once service is operational. The Shady Grove Sector Plan Minor Master Plan Amendment supports improving connectivity to the retained potential infill station from points east by adding recommending a dedicated bicycle facility on Indianola Avenue.

## 3. Vehicle Modeling

Consistent with the existing Subdivision Staging Policy (SSP), staff undertook a capacity analysis to assess existing and potential future conditions in the Plan area. This process included:

1) taking existing traffic counts at study intersections and modeling existing intersection capacity using operational software tools-in this case Synchro and VISSIM;
2) using the County's Travel Demand Model (Travel/4) to assess future network link demand based on projected land use;
3) using Travel Demand generated link volumes to generate future turning movement count assumptions, and;
4) using operational tools to compare projected future intersection capacity with existing conditions.

Modeling the Plan area proved to be relatively complex given the uncertainty of ongoing work of partner agencies. At the time of this writing, the Montgomery County Department of Transportation (MCDOT) is concurrently studying alignment options for the MD 355 Bus Rapid Transit (BRT) line, and no alignment has been chosen. As such, staff modeled Plan Area intersections along MD 355 using VISSIM, assuming both curb and median-running alignments. While the modeling process was underway, MCDOT developed a modified median-running option for one peak-hour BRT lane. Later stage modeling efforts were adjusted to account for MCDOT's progress.

The Maryland Department of Transportation's State Highway Administration (MDOT SHA) is currently studying options for managed lanes on I-270. These lanes and their potential access points will certainly impact volumes in the Plan Area; however, because the State's Draft Impact Environmental Statement (DEIS) was not available during modeling—and at the time of this writing, is still not available—network changes to the County's Travel/4 Travel Demand model were not made beyond what is available in the Metropolitan Washington Council of Government's (MWCOG) long-range travel network. The State may consider an access point at Gude Drive, which could potentially impact traffic conditions in the Plan Area. Consistent with MWCOG, the Travel/4 Model assumes two additional toll lanes in each direction on I-270. The travel demand analysis did not account for high-occupancy toll lanes on I-270, nor did it account for potential entry and exit points that do not exist today.

Table 12 provides an extensive modeling summary of the various scenarios examined during the planning process. Notes follow the summary to clarify the process. Table 13 summarizes the results of the capacity study, presenting delay in average seconds per vehicle. Table 14 reports intersection capacity as a percentage, where the numerator is the modeling output and the denominator is the relevant policy area threshold. Figures 22 through 36 depict the capacity of intersections as a percentage of intersection capacity utilized based on the relevant policy area threshold for vehicle delay. Figure 21 below provides a legend to read the capacity maps.

Figure 21 - Map Legend for Figures 18 through 32

| - 0\%-25\% capacity used |  |
| :---: | :---: |
| - $26 \%-50 \%$ capacity used |  |
| - $51 \%-75 \%$ capacity used | AM |
| - $76 \%-100 \%$ capacity used |  |
| - over $100 \%$ capacity used |  |

## A. Summary Table of 15 Scenarios and Assumptions

## Table 12 - Summary Table

| $\begin{gathered} \text { Scenario } \\ \text { ID } \end{gathered}$ | Scenario Year and Build | Tools | Bus Rapid Transit (\# dedicated lanes) | Travel Demand Run | Assumptions | Travel/4 Model: Transit Ridership Production (\%) | Travel/4 Model: Transit Ridership Attraction (\%) | Intersections above Existing Policy Area HCM Delay Standard |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | Existing Conditions | Synchro | None | 1 \& Field Counts | Existing signal phasing; TMCs from field counts | Metro Station Policy Area: 36.9 <br> Sector Plan <br> Boundary: 22.3 | Metro Station Policy Area: 12.5 <br> Sector Plan <br> Boundary: 8.3 | 1. MD 355 \& Gude Drive |
| B | Existing Conditions | VISSIM | None | 1 \& Field Counts | Existing signal phasing; TMCs from field counts | Metro Station Policy Area: 36.9 <br> Sector Plan <br> Boundary: 22.3 | Metro Station Policy Area: 12.5 <br> Sector Plan <br> Boundary: 8.3 | 1. MD 355 \& Gude Drive |
| c | 2040-2006 Plan Buildout | Synchro | None | 2 | Existing signal phasing; TMCs projected via initial travel demand model runs | Metro Station Policy Area: 43.2 <br> Sector Plan <br> Boundary: 15.6 | Metro Station Policy Area: 26.1 <br> Sector Plan <br> Boundary: 10.9 | 1. MD 355 \& Gude Drive <br> 2. MD 355 \& Shady Grove Road <br> 3. Crabbs Branch Way \& Gude Drive |
| D | 2040-2006 Sector Plan Buildout | VISSIM | Curb Running (2 lanes) | 2 | BRT phasing taken from State models, which assumed 2 dedicated lanes; TMCs projected via initial travel demand model runs' link loads | Metro Station Policy Area: 43.2 <br> Sector Plan <br> Boundary: 15.6 | Metro Station Policy Area: 26.1 <br> Sector Plan <br> Boundary: 10.9 | 1. MD 355 \& Redland Road <br> 2. MD 355 \& Gude Drive <br> 3. MD 355 \& Shady Grove Road <br> 4. MD 355 \& Watkins Pond/Indianola Drive |
| E | 2040-2006 Sector Plan Buildout | VISSIM | Median Running (2 lanes) | 2 | BRT phasing taken from State models, which assumed 2 dedicated lanes; TMCs projected via initial travel demand model runs' link loads | Metro Station <br> Policy Area: 43.2 <br> Sector Plan <br> Boundary: 15.6 | Metro Station <br> Policy Area: 26.1 <br> Sector Plan <br> Boundary: 10.9 | 1. MD 355 \& Redland Road <br> 2. MD 355 \& Gude Drive <br> 3. MD 355 \& Shady Grove Road <br> 4. MD 355 \& Ridgemont Road <br> 5. MD 355 \& Watkins Pond/Indianola Drive |
| F | 2040 - Proposed Amendment Buildout | Synchro | None | 3 | Existing signal phasing; TMCs projected via initial travel demand model runs' link loads | Metro Station Policy Area: 43.4 <br> Sector Plan <br> Boundary: 27.3 | Metro Station <br> Policy Area: 14.1 <br> Sector Plan <br> Boundary: 10.6 | 1. MD 355 \& Gude Drive <br> 2. Crabbs Branch Way \& Shady Grove Road <br> 3. MD 355 \& Shady Grove Road |
| G | 2040 - Proposed Amendment Buildout | VISSIM | Curb Running | 3 | BRT phasing taken from State models, which assumed 2 dedicated lanes; TMCs projected via initial travel demand model runs' link loads | Metro Station Policy Area: 43.4 <br> Sector Plan <br> Boundary: 27.3 | Metro Station Policy Area: 14.1 <br> Sector Plan <br> Boundary: 10.6 | 1. MD 355 \& Redland Road <br> 2. MD 355 \& Gude Drive <br> 3. MD 355 \& Shady Grove Road <br> 4. MD 355 \& Ridgemont Avenue <br> 5. MD 355 \& Watkins Pond/Indianola Drive |
| H | 2040 - Proposed Amendment Buildout | VISSIM | Median Running (2 lanes) | 3 | BRT phasing taken from State models, which assumed 2 lanes; TMCs projected via initial travel demand model runs' link loads | Metro Station Policy Area: 43.4 <br> Sector Plan <br> Boundary: 27.3 | Metro Station <br> Policy Area: 14.1 <br> Sector Plan <br> Boundary: 10.6 | 1. MD 355 \& Redland Road <br> 2. MD 355 \& Gude Drive <br> 3. MD 355 \& Shady Grove Road <br> 4. MD 355 \& Ridgemont Avenue <br> 5. MD 355 \& Watkins Pond/Indianola Drive |
| 1 | 2040 - Proposed Amendment <br> Buildout with Revised Assumptions | Synchro | None | 5 | Existing signal phasing; TMCs projected via second round travel demand model runs' link loads | Metro Station <br> Policy Area: 50 <br> Sector Plan <br> Boundary: 35 | Metro Station <br> Policy Area: 50 <br> Sector Plan <br> Boundary: 35 | 1. MD 355 \& Gude Drive <br> 2. MD 355 \& Shady Grove Road <br> 3. MD 355 \& King Farm Boulevard |


| J | 2040 - Proposed Amendment <br> Buildout with Revised <br> Assumptions | VISSIM | Curb Running (2 lanes) | 5 | BRT phasing revised to account for 2 dedicated BRT lanes; TMCs projected via second round travel demand model runs' link loads | Metro Station Policy Area: 50 <br> Sector Plan <br> Boundary: 35 | Metro Station Policy Area: 50 <br> Sector Plan <br> Boundary: 35 | 1. MD 355 \& Gude Drive <br> 2. MD 355 \& Shady Grove Road <br> 3. MD 355 \& King Farm Boulevard <br> 4. MD 355 \& Ridgemont Avenue <br> 5. MD 355 \& Watkins Pond/Indianola Drive |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{\|c} \hline \text { Scenario } \\ \text { ID } \end{array}$ | Scenario Year and Build | Tools | Bus Rapid <br> Transit <br> (\# dedicated lanes) | Travel Demand Run | Assumptions | Travel/4 Model: Transit Ridership Production (\%) | Travel/4 Model: <br> Transit Ridership <br> Attraction (\%) | 1. Intersections above Existing Policy Area HCM Delay Standard |
| K | 2040 - Proposed Amendment <br> Buildout with Revised <br> Assumptions | VISSIM | Median Running (1 peak hour lane) | 5 | BRT phasing revised to account for only one peak-hour dedicated BRT lane; TMCs projected via second round travel demand model runs' link loads | Metro Station Policy Area: 50 <br> Sector Plan <br> Boundary: 35 | Metro Station Policy Area: 50 <br> Sector Plan <br> Boundary: 35 | 2. MD 355 \& Gude Drive <br> 3. MD 355 \& Shady Grove Road <br> 4. MD 355 \& King Farm Boulevard <br> 5. MD 355 \& Ridgemont Avenue <br> 6. MD 355 \& Watkins Pond/Indianola Drive |
| L | 2040 - Proposed Amendment <br> Buildout with Revised <br> Assumptions, Mitigated | Synchro | None | 5 | Existing signal phasing with generic system-wide optimization (i.e. split and offset improvements) for mitigation; TMCs projected via second round travel demand model runs. | Metro Station Policy Area: 50 <br> Sector Plan <br> Boundary: 35 | Metro Station <br> Policy Area: 50 <br> Sector Plan <br> Boundary: 35 | None, assumes MD 355 \& Gude Drive delay threshold is increased to 80 seconds |
| M | 2040 - Proposed Amendment <br> Buildout with Revised <br> Assumptions, Mitigated | VISSIM | Curb Running (2 lanes) | 5 | BRT phasing revised to account for two dedicated BRT lanes \& generic system-wide optimization (i.e. split and offset improvements) for mitigation; TMCs projected via second round travel demand model runs. | Metro Station <br> Policy Area: 50 <br> Sector Plan <br> Boundary: 35 | Metro Station <br> Policy Area: 50 <br> Sector Plan <br> Boundary: 35 | 1. MD 355 \& Gude Drive <br> 2. MD 355 \& Shady Grove Road <br> 3. MD 355 \& Ridgemont Avenue |
| N | 2040 - Proposed Amendment <br> Buildout with Revised <br> Assumptions, Mitigated | VISSIM | Median Running (1 peak hour lane) | 5 | BRT phasing revised to account for two dedicated BRT lanes \& generic system-wide optimization (i.e. split and offset improvements) for mitigation; TMCs projected via second round travel demand model runs. | Metro Station Policy Area: 50 <br> Sector Plan <br> Boundary: 35 | Metro Station <br> Policy Area: 50 <br> Sector Plan <br> Boundary: 35 | 1. MD 355 \& Gude Drive <br> 2. MD 355 \& Shady Grove Road <br> 3. MD 355 \& Ridgemont Avenue |
| 0 | Existing Conditions - Vision Zero Mitigations | Synchro | None | 1 \& Field Counts | Existing signal phasing; TMCs from field counts | Metro Station <br> Policy Area: 36.9 <br> Sector Plan <br> Boundary: 22.3 | Metro Station <br> Policy Area: 12.5 <br> Sector Plan <br> Boundary: 8.3 | PENDING |

## Bus Rapid Transit Notes

- Bus Rapid Transit operations were considered on the VISSIM-based networks only, and only the study intersections impacted by BRT were assessed. These include:
- MD 355 \& Redland Road
MD 355 \& Ridgemont Avenue
- MD 355 \& Gude Drive
- MD 355 \& Watkins Pond Boulevard/Indianola Drive
- MD 355 \& Shady Grove Road
- Gaither Road \& King Farm Boulevard

MD 355 \& King Farm Boulevard




- All curb lane scenarios assume two dedicated lanes.

 median-running transit were amended to best match Alternative B Modified, which includes one peak-hour BRT lane along segment 4 of the MD 355 BRT study area.


## Travel Demand Run Notes

 Travel/4 model includes some local links and has finer-grained TAZs.
 assumed growth within these plan areas expected for 2040, as consistent with the assumptions of previous plan approvals.

- The model assumes all Bus Rapid Transit Lines within the Constrained Long-Range Plan (CLRP) exist by 2040, including:
- Veirs Mill Transitway

MD 355 Transitway (north and south segments)
North Bethesda Transitway

- Randolph Road Transitway
- US 29 Transitway
- MD 650 Transitway

Five rounds of travel demand modeling were run, as shown below:

- 1-2016 Existing

2-2040-2006 Plan Build Out
3-2040 Proposed Amendment Build Out
6 4-2040 Proposed Amendment Build Out with Revised Speeds

- 5-2040 Proposed Amendment Build Out with Revised Speeds \& Non-Auto Driver Mode Share Goals
- The fourth and fifth round of travel demand modeling included the following updates to the Travel/ 4 Cube network:

0 Change to free flow speed on Shady Grove Road from 50 miles per hour to 35 miles per hour between Crabbs Branch Way and Midcounty Highway (Free Flow Speed West of Crabbs Branch Way was already 35 miles per hour in network).

- Change to free flow speed on Crabbs Branch Way between Shady Grove Road and Indianola Drive from 35 miles per hour to 25 miles per hour, consistent with Vision Zero Principles and the Geographic Location (Urban Road Code
- Amendments to Travel/4's origin destination matrix to account for Non-Auto Driver Mode Share (NAMDS) goals:
- 50 percent non-auto HBW trips for residents commuting from Metro Station Policy Area to elsewhere in the region;
- 25 percent non-auto HBW trips for residents commuting from Sector Plan Area (excluding the Metro Station Policy Area) to elsewhere in the region; and
- 12.5 percent non-auto HBW trips for employees commuting to the Sector Plan Area from elsewhere in the region
- The fourth round of Travel/4 did not feed into any of the delay analyses
 forecast (nor the delay model networks) account for potential entry and exit points that do not exist today.
Turning Movement Counts (TMCs) for the 2040 scenarios were developed using percentage splits based on adjacent 2040 load links, existing turning movement counts, and professional judgement
- The TAZs for Travel Demand modeling can be found below in addition to more detailed information regarding Plan Area NADMS outputs/inputs from the modeling.


| Production NADMS from Travel/4 |  |  |  | Attraction NADMS from Travel/4 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | NADMS (\%) Transit Ridership |  |  |  | NADMS (\%) Transit Ridership |  |  |
|  | MetroStation Policy Area | Sector Plan Boundary | Sector Plan <br> Boundary - <br> Policy Area |  | MetroStation Policy Area | Sector Plan Boundary | Sector Plan <br> Boundary - <br> Policy Area |
| 2016 Ext | 36.9 | 25.5 | 22.3 | 2016 Ext | 12.5 | 9.1 | 8.3 |
| 2040 NB | 43.2 | 29.9 | 26.1 | 2040 NB | 15.6 | 11.9 | 10.9 |
| 2040Alt1 | 43.4 | 41.3 | 27.3 | 2040Alt1 | 14.1 | 14.0 | 10.6 |
| 2040Alt1_RE NADMS | 50.0 | N/A | 35.0 | 2040Alt1_RE NADMS | 25.0 | N/A | 25.0 |
| Used TAZs | $\begin{gathered} 519,520,521, \\ 527,737 \end{gathered}$ | $\begin{gathered} 518-524,527,529- \\ 530,737,3759 \end{gathered}$ | $\begin{gathered} 518,522-524,529 \\ 530,3759 \end{gathered}$ | Used TAZs | $\begin{gathered} 519,520,521, \\ 527,737 \end{gathered}$ | $\begin{gathered} 518-524,527,529- \\ 530,737,3759 \end{gathered}$ | $\left\lvert\, \begin{gathered} 518,522-524,529 \\ 530,3759 \end{gathered}\right.$ |
|  | 5TAZs | 12 TAZs | 7TAZs |  | 5 TAZs | 12 TAZs | 7 TAZs |
| HBW trips commuting from |  |  |  | HBW trips commuting into |  |  |  |

## Mitigation Scenarios

- Scenarios $L$ and $M$ assume the following mitigations:


## MD 355 and Gude

- Increase the delay threshold at MD 355 and Gude Drive to 80 seconds;

Convert the free southbound right turn lane into a shared through-right lane; add a southbound receiving lane on MD 355 to accommodate the additional through lane
Convert the free southbound right turn lane into a shared through-right lane; add a southbound receiving lane on MD 355 to accommodate the
Create a channelized westbound right turn lane; accommodate the free-right with additional merge space on the northbound northern leg
MD 355 and Shady Grove Road
Remove the split phasing on Shady Grove Road and MD 355
Convert eastbound Shady Grove Road lane configuration to two exclusive lefts; four through lanes, and two exclusive right-turn lanes (remove dynamic right, which changes the lane movement restrictions during peak hours)
Convert the westbound Shady Grove Road lane configuration to two exclusive left-turn lanes and four through lanes; maintain the channelized right
MD 355 and King Farm Boulevard
Add new EB turn lane on King Farm Boulevard, either within the median, or by adding a right-turn pocket and shifting the left and through lanes south

- Scenario $N$ includes the mitigations listed in the bullet point above (scenarios $L$ and $M$ ) AND the addition of a NB right-turn pocket on MD 355 at Redland Road

|  |  |  | A. Existing Conditions (Synchro) |  | B. Existing Conditions (VISSIM) |  | C. 2040 <br> 2006 Plan <br> Build Out <br> (Synchro) |  | D. 2040 2006 Build Out (VISSIM Curb Running) |  | E. 2040 <br> 2006 Plan <br> Build Out <br> (VISSIM <br> Center <br> Running) |  | F. 2040 <br> Alternative <br> 1 (Synchro Only) |  | G. 2040 <br> Alternative <br> 1 (VISSIM <br> Curb <br> Running |  | H. 2040 <br> Alternative <br> 1 (VISSIM <br> Center <br> Running) |  | I. 2040 <br> Alternative <br> 1 (Synchro Revised Volumes) |  | J. 2040 <br> Alternative <br> 1 (VISSIM <br> Revised <br> Volumes <br> Curb <br> Running) |  | K. 2040 <br> Alternative <br> 1 (VISSIM <br> Revised <br> Volumes <br> Center <br> Running) |  | L. 2040 <br> Alternative <br> 1 (Synchro Revised Volumes Mitigated) |  | M. 2040 <br> Alternative <br> 1 (VISSIM <br> Revised <br> Volumes <br> Mitigated Curb <br> Running) |  | N. 2040 <br> Alternative <br> 1 (VISSIM <br> Revised <br> Volumes <br> Mitigated <br> Center <br> Running) |  | O. Existing Conditions Vision Zero Imprvmts. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Location | $\begin{array}{\|l} \hline \text { VISSIM } \\ \text { Used? } \\ \hline \end{array}$ | Area Std. | $\begin{gathered} \text { AM } \\ \text { Delay } \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { PM } \\ \text { Delay } \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline \text { AM } \\ \text { Delay } \end{array}$ | $\begin{array}{\|c\|} \hline \text { PM } \\ \text { Delay } \end{array}$ | $\begin{array}{\|c\|} \hline \text { AM } \\ \text { Delay } \end{array}$ | $\begin{gathered} \hline \text { PM } \\ \text { Delay } \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { AM } \\ \text { Delay } \\ \hline \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { PM } \\ \text { Delay } \\ \hline \end{array}$ | $\begin{gathered} \hline \text { AM } \\ \text { Delay } \\ \hline \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { PM } \\ \text { Delay } \\ \hline \end{array}$ | $\begin{gathered} \text { AM } \\ \text { Delay } \end{gathered}$ | $\begin{gathered} \hline \text { PM } \\ \text { Delay } \end{gathered}$ | $\begin{gathered} \hline \text { AM } \\ \text { Delay } \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { PM } \\ \text { Delay } \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline \text { AM } \\ \text { Delay } \end{array}$ | $\begin{gathered} \hline \text { PM } \\ \text { Delay } \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { AM } \\ \text { Delay } \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { PM } \\ \text { Delay } \end{array}$ | $\begin{gathered} \hline \text { AM } \\ \text { Delay } \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { PM } \\ \text { Delay } \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { AM } \\ \text { Delay } \\ \hline \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { PM } \\ \text { Delay } \end{array}$ | $\begin{gathered} \hline \text { AM } \\ \text { Delay } \end{gathered}$ | $\begin{gathered} \hline \text { PM } \\ \text { Delay } \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { AM } \\ \text { Delay } \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { PM } \\ \text { Delay } \\ \hline \end{array}$ | $\begin{gathered} \hline \text { AM } \\ \text { Delay } \end{gathered}$ | $\begin{gathered} \hline \text { PM } \\ \text { Delay } \end{gathered}$ | $\begin{gathered} \hline \text { AM } \\ \text { Delay } \end{gathered}$ | $\begin{gathered} \hline \text { PM } \\ \text { Delay } \\ \hline \end{gathered}$ |
| $\begin{gathered} \hline \text { MD } 355 \text { \& Redland } \\ \text { Road } \\ \hline \end{gathered}$ | YES | 120 | 35.6 | 53.3 | 47.2 | 51.6 | 71 | 109.7 | 61.8 | 149.4 | 88.9 | 184.1 | 81.2 | 114.2 | 82 | 133.2 | 96.4 | 140.8 | 106.1 | 107.1 | 100.1 | 76 | 107.3 | 140.9 | 106 | 106 | 95.7 | 84.1 | 99.1 | 105.9 | 63 | 109.1 |
| MD 355 \& Gude Drive | YES | 63 | 95.8 | 71 | 86.3 | 71 | 116.2 | 114 | 149.9 | 179 | 113.6 | 320.5 | 132.4 | 116.5 | 143 | 194.7 | 117.1 | 305.2 | 129 | 112.3 | 144.9 | 160.4 | 118.4 | 171.2 | 56.6 | 77.5 | 55.1 | 155.5 | 61 | 131.7 | 96 | 70.9 |
| Crabbs Branch Way \& Redland Road | NO | 120 | 47.6 | 45.9 | null | null | 66.8 | 63.6 | null | null | null | null | 66.8 | 94 | null | null | null | null | 41.1 | 49.8 | null | null | null | null | 41.1 | 49.8 | null | null | null | null | 106.3 | 76.9 |
| Shady Grove Road \& Oakmont Avenue | NO | 120 | 31.2 | 31.3 | null | null | 37.3 | 31.1 | null | null | null | null | 39.1 | 32.9 | null | null | null | null | 35 | 24.5 | null | null | null | null | 35.1 | 28.1 | null | null | null | null | 35.5 | 33.3 |
| Crabbs Branch Way \& Shady Grove Road | NO | 120 | 38.2 | 48.2 | null | null | 44.4 | 118.1 | null | null | null | null | 60.1 | 161.8 | null | null | null | null | 45.3 | 53.7 | null | null | null | null | 41.9 | 66.8 | null | null | null | null | 80.6 | 61.1 |
| MD 355 \& Shady Grove Road | YES | 120 | 64.6 | 92.3 | 46.8 | 41.1 | 88.5 | 128.4 | 205.8 | 107.1 | 222.4 | 117 | 91.3 | 150.5 | 238.8 | 176.7 | 219.6 | 244.2 | 87 | 139.5 | 240.3 | 52.8 | 202.2 | 74.3 | 78.5 | 58.6 | 223.6 | 76.4 | 236.2 | 76.9 | 65.7 | 97.3 |
| Crabbs Branch Way \& Indianola Drive | No | 120 | 16.1 | 15.1 | null | null | 22.3 | 14.9 | null | null | null | null | 29.4 | 13.8 | null | null | null | null | 10.3 | 9.1 | null | null | null | null | 10.3 | 9.1 | null | null | null | null | 24.7 | 17.7 |
| Crabbs Branch Way \& Gude Drive | No | 59 | 37.9 | 44.5 | null | null | 40.7 | 60 | null | null | null | null | 36.5 | 53.3 | null | null | null | null | 35.8 | 50.6 | null | null | null | null | 35.8 | 50.6 | null | null | null | null | 39.3 | 44.8 |
| MD 355 \& King Farm Boulevard | YES | 120 | 14.5 | 65.2 | 34.9 | 20.5 | 13.3 | 49 | 60.3 | 99.7 | 83.9 | 119 | 21.3 | 116.8 | 87.8 | 91.7 | 88.7 | 97.1 | 187.9 | 118.3 | 144.3 | 40.3 | 137.2 | 41.2 | 50.9 | 63.2 | 114 | 43 | 102.3 | 46.4 | 23.8 | 76.4 |
| MD 355 \& Ridgemont Avenue | YES | 120 | 6.6 | 11 | 16 | 5.4 | 8.9 | 21.9 | 98.1 | 110.7 | 143.9 | 117.7 | 10.3 | 23.1 | 136.5 | 142.8 | 142.5 | 160.1 | 10.9 | 24 | 127.1 | 11.5 | 125.2 | 15.4 | 9.9 | 24.4 | 124.5 | 10 | 121 | 14.8 | 6.9 | 11.4 |
| MD 355 \& Indianola Drive | YES | 63 | 20.8 | 22.2 | 26.7 | 13.9 | 21.1 | 25.7 | 73.1 | 167.8 | 118.2 | 232.7 | 24.1 | 26.1 | 132.4 | 140.8 | 138.1 | 129.8 | 17 | 11.5 | 73 | 21.5 | 90.3 | 53.2 | 18.6 | 13.1 | 20.4 | 24 | 30.9 | 25.7 | 20.5 | 22.5 |
| Gaither Road \& King Farm Boulevard | YES | 63 | 18.2 | 21.3 | 12.8 | 15.2 | 16.2 | 19.7 | 11.4 | 12.6 | 11.1 | 12.2 | 16.7 | 19.5 | 11.2 | 11.8 | 10.8 | 12.3 | 17.9 | 19.3 | 11.2 | 13.3 | 11.6 | 13 | 17.9 | 19.3 | 11 | 13.1 | 11.2 | 13.7 | 18.2 | 21.3 |
| Gaither Road \& Piccard Drive | NO | 63 | 7.1 | 7.7 | null | null | 8.3 | 9.5 | null | null | null | null | 8.3 | 9.8 | null | null | null | null | 8.6 | 10 | null | null | null | null | 8.6 | 10 | null | null | null | null | 7.1 | 7.7 |
| Gude Drive \& Watkins Pond Blvd. | NO | 63 | 6.7 | 6.9 | null | null | 8.3 | 7.7 | null | null | null | null | 8.4 | 7.5 | null | null | null | null | 8 | 7.6 | null | null | null | null | 8 | 7.6 | null | null | null | null | 6.7 | 6.9 |
| Gude Drive \& Gaither | NO | 63 | 13.2 | 16.3 | null | null | 16.3 | 20.4 | null | null | null | null | 16.2 | 20.7 | null | null | null | null | 16.4 | 22.4 | null | null | null | null | 16.4 | 22.4 | null | null | null | null | 13.2 | 16.3 |
| Needwood Road \& Redland Road | No | 59 | 33.8 | 16.5 | null | null | 34.3 | 18.5 | null | null | null | null | 38 | 23.5 | null | null | null | null | 38.5 | 22.7 | null | null | null | null | 38.5 | 22.7 | null | null | null | null | 33.5 | 17.8 |
| Shady Grove Road \& Gaither Road | No | 63 | 43.8 | 55.6 | null | null | 52.7 | 52.8 | null | null | null | null | 55.6 | 54.1 | null | null | null | null | 62.9 | 53.9 | null | null | null | null | 60 | 53.9 | null | null | null | null | 44.6 | 56.2 |
| Redland Road \& Shady Grove Metro | NO | 120 | 17.9 | 30.7 | null | null | 23.2 | 27.9 | null | null | null | null | 25.9 | 35.4 | null | null | null | null | 43.5 | 32.6 | null | null | null | null | 43.4 | 32.6 | null | null | null | null | 16 | 37.2 |
| Redland Road \& Somerville Drive | NO | 120 | 12.2 | 16.3 | null | null | 11.2 | 17 | null | null | null | null | 21.9 | 67.8 | null | null | null | null | 21.1 | 65.2 | null | null | null | null | 21.2 | 65.2 | null | null | null | null | 15.9 | 22.7 |

Table 14 - Capacity Analysis: Average Intersection Delay as a Percentage of Policy Area Threshold

|  |  |  | A. Existing Conditions (Synchro) |  | B. Existing Conditions (VISSIM) |  | C. 2040 <br> 2006 Plan <br> Build Out <br> (Synchro) |  | D. 2040 <br> 2006 Build Out (VISSIM Curb Running) |  | E. 2040 <br> 2006 Plan <br> Build Out <br> (VISSIM <br> Center <br> Running) |  | F. 2040 <br> Alternative <br> 1 (Synchro Only) |  | G. 2040 <br> Alternative <br> 1 (VISSIM <br> Curb <br> Running |  | H. 2040 <br> Alternative <br> 1 (VISSIM <br> Center <br> Running) |  | I. 2040 <br> Alternative <br> 1 (Synchro Revised Volumes) |  | J. 2040 <br> Alternative <br> 1 (VISSIM <br> Revised <br> Volumes <br> Curb <br> Running) |  | K. 2040 <br> Alternative <br> 1 (VISSIM <br> Revised Volumes Center Running) |  | L. 2040 <br> Alternative <br> 1 (Synchro Revised Volumes Mitigated) |  | M. 2040 <br> Alternative <br> 1 (VISSIM <br> Revised <br> Volumes <br> Mitigated <br> Curb <br> Running) |  | N. 2040 <br> Alternative <br> 1 (VISSIM <br> Revised <br> Volumes <br> Mitigated <br> Center <br> Running) |  | O. Existing Conditions Vision Zero Imprvmts. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Location | $\begin{aligned} & \hline \text { VISSIM } \\ & \text { Used? } \end{aligned}$ | $\begin{gathered} \hline \text { Area } \\ \text { Std. } \\ \hline \end{gathered}$ | $\begin{gathered} \text { AM } \\ \text { Delay } \end{gathered}$ | $\begin{gathered} \hline \text { PM } \\ \text { Delay } \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { AM } \\ \text { Delay } \\ \hline \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { PM } \\ \text { Delay } \\ \hline \end{array}$ | $\begin{gathered} \hline \text { AM } \\ \text { Delay } \\ \hline \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { PM } \\ \text { Delay } \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline \text { AM } \\ \text { Delay } \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline \text { PM } \\ \text { Delay } \\ \hline \end{array}$ | $\begin{gathered} \hline \text { AM } \\ \text { Delay } \\ \hline \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { PM } \\ \text { Delay } \end{array}$ | $\begin{gathered} \hline \text { AM } \\ \text { Delay } \\ \hline \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { PM } \\ \text { Delay } \end{array}$ | $\begin{gathered} \hline \text { AM } \\ \text { Delay } \\ \hline \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { PM } \\ \text { Delay } \end{array}$ | $\begin{gathered} \hline \text { AM } \\ \text { Delay } \\ \hline \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { PM } \\ \text { Delay } \\ \hline \end{array}$ | $\begin{gathered} \hline \text { AM } \\ \text { Delay } \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { PM } \\ \text { Delay } \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline \text { AM } \\ \text { Delay } \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline \text { PM } \\ \text { Delay } \end{array}$ | $\begin{gathered} \text { AM } \\ \text { Delay } \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { PM } \\ \text { Delay } \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline \text { AM } \\ \text { Delay } \end{array}$ | $\begin{array}{\|c\|} \hline \text { PM } \\ \text { Delay } \\ \hline \end{array}$ | $\begin{gathered} \text { AM } \\ \text { Delay } \\ \hline \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { PM } \\ \text { Delay } \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline \text { AM } \\ \text { Delay } \end{array}$ | $\begin{array}{\|c\|} \hline \text { PM } \\ \text { Delay } \\ \hline \end{array}$ | $\begin{gathered} \hline \text { AM } \\ \text { Delay } \\ \hline \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { PM } \\ \text { Delay } \\ \hline \end{array}$ |
| MD 355 \& Redland Road | YES | 120 | 30\% | 44\% | 39\% | 43\% | 59\% | 91\% | 52\% | 125\% | 74\% | 153\% | 68\% | 95\% | 68\% | 111\% | 80\% | 117\% | 88\% | 89\% | 83\% | 63\% | 89\% | 117\% | 88\% | 88\% | 80\% | 70\% | 83\% | 88\% | 53\% | 91\% |
| MD 355 \& Gude Drive | yes | 63 | 152\% | 113\% | 137\% | 113\% | 184\% | 181\% | 238\% | 284\% | 180\% | 509\% | 210\% | 185\% | 227\% | 309\% | 186\% | 484\% | 205\% | 178\% | 230\% | 255\% | 188\% | 272\% | 90\% | 123\% | 87\% | 247\% | 97\% | 209\% | 152\% | 113\% |
| Crabbs Branch Way \& Redland Road | NO | 120 | 40\% | 38\% | null | null | 56\% | 53\% | null | null | null | null | 56\% | 78\% | null | null | null | null | 34\% | 42\% | null | null | null | null | 34\% | 42\% | null | null | null | null | 89\% | 64\% |
| Shady Grove Road \& Oakmont Avenue | NO | 120 | 26\% | 26\% | null | null | 31\% | 26\% | null | null | null | null | 33\% | 27\% | null | null | null | null | 29\% | 20\% | null | null | null | null | 29\% | 23\% | null | null | null | null | 30\% | 28\% |
| Crabbs Branch Way \& Shady Grove Road | NO | 120 | 32\% | 40\% | null | null | 37\% | 98\% | null | null | null | null | 50\% | 135\% | null | null | null | null | 38\% | 45\% | null | null | null | null | 35\% | 56\% | null | null | null | null | 67\% | 51\% |
| MD 355 \& Shady Grove Road | YES | 120 | 54\% | 77\% | 39\% | 34\% | 74\% | 107\% | 172\% | 89\% | 185\% | 98\% | 76\% | 125\% | 199\% | 147\% | 183\% | 204\% | 73\% | 116\% | 200\% | 44\% | 169\% | 62\% | 65\% | 49\% | 186\% | 64\% | 197\% | 64\% | 55\% | 81\% |
| Crabbs Branch Way \& Indianola Drive | NO | 120 | 13\% | 13\% | null | null | 19\% | 12\% | null | null | null | null | 25\% | 12\% | null | null | null | null | 9\% | 8\% | null | null | null | null | 9\% | 8\% | null | null | null | null | 21\% | 15\% |
| Crabbs Branch Way \& Gude Drive | No | 59 | 64\% | 75\% | null | null | 69\% | 102\% | null | null | null | null | 62\% | 90\% | null | null | null | null | 61\% | 86\% | null | null | null | null | 61\% | 86\% | null | null | null | null | 67\% | 76\% |
| MD 355 \& King Farm Boulevard | YES | 120 | 12\% | 54\% | 29\% | 17\% | 11\% | 41\% | 50\% | 83\% | 70\% | 99\% | 18\% | 97\% | 73\% | 76\% | 74\% | 81\% | 157\% | 99\% | 120\% | 34\% | 114\% | 34\% | 42\% | 53\% | 95\% | 36\% | 85\% | 39\% | 20\% | 64\% |
| MD 355 \& Ridgemont Avenue | YES | 120 | 6\% | 9\% | 13\% | 5\% | 7\% | 18\% | 82\% | 92\% | 120\% | 98\% | 9\% | 19\% | 114\% | 119\% | 119\% | 133\% | 9\% | 20\% | 106\% | 10\% | 104\% | 13\% | 8\% | 20\% | 104\% | 8\% | 101\% | 12\% | 6\% | $10 \%$ |
| MD 355 \& Indianola Drive | YES | 63 | 33\% | 35\% | 42\% | 22\% | 33\% | 41\% | 116\% | 266\% | 188\% | 369\% | 38\% | 41\% | 210\% | 223\% | 219\% | 206\% | 27\% | 18\% | 116\% | 34\% | 143\% | 84\% | 30\% | 21\% | 32\% | 38\% | 49\% | 41\% | 33\% | 36\% |
| Gaither Road \& King Farm Boulevard | YES | 63 | 29\% | 34\% | 20\% | 24\% | 26\% | 31\% | 18\% | 20\% | 18\% | 19\% | 27\% | 31\% | 18\% | 19\% | 17\% | 20\% | 28\% | 31\% | 18\% | 21\% | 18\% | 21\% | 28\% | 31\% | 17\% | 21\% | 18\% | 22\% | 29\% | 348 |
| Gaither Road \& Piccard Drive | NO | 63 | 11\% | 12\% | null | null | 13\% | 15\% | null | null | null | null | 13\% | 16\% | null | null | null | null | 14\% | 16\% | null | null | null | null | 14\% | 16\% | null | null | null | null | 11\% | 12\% |
| Gude Drive \& Watkins Pond Blvd. | NO | 63 | 11\% | 11\% | null | null | 13\% | 12\% | null | null | null | null | 13\% | 12\% | null | null | null | null | 13\% | 12\% | null | null | null | null | 13\% | 12\% | null | null | null | null | 11\% | 11\% |
| Gude Drive \& Gaither Road | NO | 63 | 21\% | 26\% | null | null | 26\% | 32\% | null | null | null | null | 26\% | 33\% | null | null | null | null | 26\% | 36\% | null | null | null | null | 26\% | 36\% | null | null | null | null | 21\% | 26\% |
| Needwood Road \& Redland Road | NO | 59 | 57\% | 28\% | null | null | 58\% | 31\% | null | null | null | null | 64\% | 40\% | null | null | null | null | 65\% | 38\% | null | null | null | null | 65\% | 38\% | null | null | null | null | 57\% | 30\% |
| Shady Grove Road \& Gaither Road | NO | 63 | 70\% | 88\% | null | null | 84\% | 84\% | null | null | null | null | 88\% | 86\% | null | null | null | null | 100\% | 86\% | null | null | null | null | 95\% | 86\% | null | null | null | null | 71\% | 89\% |
| Redland Road \& Shady Grove Metro | NO | 120 | 15\% | 26\% | null | null | 19\% | 23\% | null | null | null | null | 22\% | 30\% | null | null | null | null | 36\% | 27\% | null | null | null | null | 36\% | 27\% | null | null | null | null | 13\% | 31\% |
| Redland Road \& Somerville Drive | NO | 120 | 10\% | 14\% | null | null | 9\% | 14\% | null | null | null | null | 18\% | 57\% | null | null | null | null | 18\% | 54\% | null | null | null | null | 18\% | 54\% | null | null | null | null | 13\% | 19\% |

Figure 22 - A. Existing Conditions (Synchro)


Figure 23 - B. Existing Conditions (VISSIM)


Figure 24 - C. 2040 Plan Build Out (Synchro)


Figure 25 - D. 20402006 Plan Build Out (VISSIM, Curb Running)


Figure 26 - E. 20402006 Plan Build Out (VISSIM, Center Running)


Figure 27 - F. 2040 Alternative 1 (Synchro)


Figure 28 - G. 2040 Alterative 1 (VISSIM, Curb Running)


Figure 29 - H. 2040 Alternative 1 (VISSIM, Center Running)


Figure 30 - I. 2040 Alternative 1 (Synchro, Revised Volumes)


Figure 31 - J. 2040 Alternative 1 (Synchro, Revised Volumes, Curb Running)


Figure 32 - K. 2040 Alternative 1 (VISSIM, Revised Volumes, Center Running)


Figure 33 - L. 2040 Alternative 1 (Synchro, Revised Volumes, Mitigated)


Figure 34 - M. 2040 Alternative 1 (VISSIM, Revised Volumes Mitigated, Curb Running)


Figure 35 - N. 2040 Alternative 1 (VISSIM, Revised Volumes Mitigated, Center Running)


Figure 36 - O. Existing Conditions Volumes with Vision Zero Improvements


## C. Discussion of Trade-Offs

Based on the capacity analyses, vehicular capacity improvements are necessary to accommodate future conditions per the existing Subdivision Staging Policy; however, these improvements favor vehicular capacity over safety, either by adding lanes, adding channelized rights, maintaining channelization for rights, or by removing split phasing. These improvements are often not desirable and may not be necessarily improve future conditions. Travel Demand Modeling, which was used to generate turning movement counts for 2040 scenarios, is not a reliable indicator of future conditions due to the variability of future travel patterns, future land use, future roadway and transit network, and future user preferences.

In cases where new development triggers review of vehicular capacity and such a review results in a determination of lacking vehicular infrastructure based on delay metrics, this Plan recommends that these improvements be low-priority, and that any determination should factor in an assessment of safety needs. Alternative improvements or payments could be made to support this Plan's safe, multimodal vision. An infrastructure prioritization scheme can be found in section 6.

## 4. Interchange Feasibility Analysis

The 2006 Shady Grove Sector Plan recommended an interchange at MD 355 and Gude Drive, as well as a partial interchange at Crabbs Branch Way and Metro Access Road. The capacity analysis for this effort indicates that the partial interchange is not necessary assuming smaller mitigations can be made and the Plan's non-auto driver mode share goals (NADMS) can be met. Additionally, it would be difficult to implement based on the environmental and stormwater constraints in the vicinity of the Plan area.

The MD 355 and Gude Drive intersection does not meet the capacity standards for any of the studied scenarios, including the mitigated scenarios under the current policy area standard of 63 seconds. To understand whether this intersection warranted a full interchange or other improvement(s), the Department contracted with a third-party to undertake an interchange feasibility analysis. The results of the feasibility analysis demonstrate that implementing an interchange at MD 355 and Gude Drive would result in significant environmental, utility, and property costs. Additionally, total project costs range between $\$ 25$ and $\$ 75$ million dollars. More modest improvements, including retention of the existing free-right, reconfiguration of the intersection and its associated phasing, and targeted widening, could result in an intersection that meets a revised policy area standard ( 80 seconds of average delay/vehicle).

While the Department advanced two options-a single-point interchange and a Gude Drive overpassfor third-party study, ultimately the study's dynamic modeling (done in VISSIM) showed that the traffic flow benefits of the interchange for MD 355 were minimal due to the close spacing of nearby signalized intersections.

This Plan recommends that capital expenditures be directed toward projects that achieve the Plan's multimodal vision rather than projects that extend the auto-centric lifespan of the current environment. The third party's memo on the benefits and drawbacks of each studied option is available in the following section.

July 19, 2019
Revised
October 16, 2019

Patrick Reed, AICP<br>Transportation Planner Coordinator<br>Montgomery County Planning Department<br>Planning Area 2

Subject: $\quad$ RFQ-35-118 - On-Call Transportation Planning and Engineering Services
Task 18 Shady Grove Minor Master Plan Amendment Vision Zero Assessment and Interchange Feasibility Study
SAI File: 15-43 Task 18
Dear Mr. Reed:
Sabra \& Associates Inc. (SAI) has identified and evaluated 6 options for reducing congestion at the intersection of Gude Drive at MD 355. MD 355 is a corridor that is heavily traveled currently and one that will experience increased congestion in 2040 . Of the six options evaluated, three are at-grade improvements and an additional three options are grade-separated. The intersection of Gude Drive at MD 355 is projected to have a failing Level of Service and an average vehicle delay that far exceeds the Master Plan's delay standard in Year 2040 under the Alternative 1 Master Plan Amendment. The goal of this evaluation is to determine what options are available to reduce the overall congestion at the intersection and to highlight the benefits and disadvantages of each option. These six options were chosen because of their relativelysmall footprints and impacts on surrounding land uses. They are as follows:

- At-Grade Improvements:
- Option 1: Reduction to 80 second Average Delay via free right turns on the eastbound, westbound, and southbound directions
- Option 2: Reduction to 100 second Average Delay via free right turns on the eastbound and westbound directions
- Option 3: Exaggerated Jug Handle to remove of all Left Turns
- Grade-Separated Improvements:
- Option 4: Single Point Urban Interchange (SPUI) under structure, Gude Drive free flow
- Option 5: Northbound/southbound left-turn Flyover Ramps
- Option 6: Single Point Urban Interchange (SPUI), MD 355 free flow

A description of each of these options, as well as a visual representation of how the option impacts the control of each movement at the intersection, is shown in Table 4. Additionally, an evaluation matrix summarizes and compares the overall impacts of each option across the following metrics:

1. Traffic

- Changes to Traffic Operations
- Traffic Delay Changes
- Bus Rapid Transit (BRT) Impacts

2. Approximate Construction Cost
3. Property Impacts

- Right of Way (ROW) Impacts
- Commercial Driveway access Impacts

4. Environmental and Utility Impacts

- Change in Impervious Area
- Above-ground Utility Impacts
- Trees Impacts

5. Pedestrian Safety and Convenience

Finally, each option is shown conceptually in plan-view at the end of this memorandum. Based on subsequent discussions, Options 1, 2, 4 and 6 are also shown with an additional uni-directional BRT-only lane, an example of which is depicted in Figure 1. The BRT lane is shown as a 12' bus-only lane with 4' wide curbs on either side. This additional dedicated travel lane is not expected to alter the number of driveways impacted or property takes, however it is expected to add about $\$ 2,000,000$ in the costs for these options (shown in the matrix in Table 5) based on the added ROW needed and additional construction cost.


Figure 1: Potential Uni-directional BRT-only Lane running in the Center median of MD 355.
All six options show a conceptual proposed side path along the east side of MD 355.

## Year 2040 Volumes

SAI based our traffic analysis on Year 2040 volumes on the land use projections for the Alternative 1 Master Plan Amendment. These volumes were used to evaluate changes in static traffic operations at the Gude Drive / MD 355 intersection (see Matrix below), for each of the six options tested. It should be noted that while industry-standards tools like Synchro ${ }^{\mathrm{TM}}$ model changes in static delay at a given intersection, other traffic modeling software also considers the impacts from adjacent intersections. For example, a downstream congested intersection can result in limited available capacity to receive upstream traffic, such that an upstream intersection is not able to process as much traffic through it. Accordingly, we also used a dynamic modeling software, Vissim ${ }^{\text {TM }}$, to evaluate changes in travel time through the MD 355 corridor from Shady Grove through Gude Drive to College Parkway.

After our static modeling effort, but prior to our dynamic modeling of corridor travel time, we received an update to the 2040 forecast volumes for the Alternative 1 Master Plan Amendment; these new volumes were based on a slightly-modified mode split. SAI balanced these raw forecast volumes prior to applying
them to our Vissim model. A comparison of the original balanced volumes, new raw volumes, and new balanced volumes is shown in Figure 2 below for the intersection of MD 355 at Gude Drive. Raw volumes were balanced along MD 355 first and then between adjacent intersection along Gude Drive.


Figure 2: Comparison of Original Alt 1 Master Plan Amendment Volumes with modified Raw and balance volumes
As shown in Figure 2, the modified balanced volumes are similar to the original volumes used in our original synchro analysis. With these new 2040 volumes, SAI evaluated travel times along the MD 355 corridor using Vissim, from Shady Grove Road to College Parkway. We compared the Year 2040 no-build scenario with the Option 4 scenario that provides a Gude Drive overpass and reduces the number of signal phases at MD 355/Gude from 4 to 3 , which results in more green time along MD 355. We evaluated AM and PM peak hours for each direction of MD 355. The results for the general-purpose travel lanes are the average of five travel-time runs and are shown in Table 1 below.

Table 1: Travel Time Summary for General purpose vehicle lanes for both the 2040 No-build and Option 4 scenarios

|  | Travel Time Summary Table (min:sec) <br> MD 355 between Shady Grove Road and College Parkway |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Southbound |  |  |  |  |  | Northbound |  |  |  |  |  |
|  | Segment |  | AM Peak |  | PM Peak |  | Segment |  | AM Peak |  | PM Peak |  |
|  |  |  | $2040$ <br> No Build | $2040$ <br> Option 4 | 2040 <br> No Build | $2040$ <br> Option 4 |  |  | $2040$ <br> No Build | $2040$ <br> Option 4 | 2040 <br> No Build | $2040$ <br> Option 4 |
|  | A | Shady Grove Rd to Ridgemont Ave | 03:46 | 03:27 | 00:50 | 00:49 | A | Ridgemont Ave to Shady Grove Rd | 01:20 | 01:21 | 01:21 | 01:22 |
|  | B | Ridgemont Ave to King Farm Blvd | 01:54 | 01:43 | 00:47 | 00:49 | B | King Farm Blvd to Ridgemont Ave | 00:25 | 00:25 | 00:25 | 00:25 |
|  | C | King Farm Blvd to Redland Rd | 01:28 | 01:18 | 00:50 | 00:50 | C | Redland Rd to King Farm Blvd | 00:30 | 00:32 | 00:47 | 00:46 |
|  | D | Redland Rd to Indianola Rd | 02:10 | 01:06 | 00:37 | 00:37 | D | Indianola Rd to Redland Rd | 01:02 | 01:01 | 02:46 | 03:14 |
|  | E | Indianola Rd to Gude Dr | 03:27 | 01:12 | 01:34 | 00:52 | E | Gude Dr to Indianola Rd | 01:25 | 01:15 | 01:43 | 04:45 |
|  | F | Gude Dr to College Pkwy | 00:28 | 00:30 | 00:29 | 00:38 | F | College Pkwy to Gude Dr | 01:09 | 00:53 | 02:52 | 02:54 |
|  |  | Total | 13:12 | 09:16 | 05:05 | 04:36 |  | Total | 05:51 | 05:29 | 09:54 | 13:25 |

For general purpose travel lanes:

- The southbound direction in the AM sees large improvements due to the congestion relief on the southbound approach to Gude Drive and also the southbound approach to Indianola (since the queues spill back from Gude toward Indianola - which limits the amount of southbound throughput at Indianola, as well). It should be noted that if there is substantial congestion south of College

Parkway in the AM southbound direction, these results will not be as beneficial as shown in the table ${ }^{1}$.

- The southbound direction in the PM is the non-peak direction and sees modest improvement, due almost entirely to the amount of new green time provided by the Option 4 scenario.
- The northbound direction in the AM is the non-peak direction and sees modest improvement, also due almost entirely to the amount of new green time provided by the Option 4 scenario.
- The northbound direction in the PM experiences significantly worse congestion in the Option 4 scenario, largely due to the MD 355 segment between Gude Drive and Indianola Road. The northbound direction of this segment becomes congested with vehicles faster under the Option 4 improvements, because they allow cars from both Gude Drive and points south along MD 355 to progress into this space more efficiently. Meanwhile the ability of the Indianola Road to process these additional vehicles hasn't changed. This results in longer queues approaching Indianola Road in the Option 4 scenario, since the improved Gude Drive intersection doesn't meter traffic as slowly. As a result, Option 4 results in a more efficient intersection when viewed in isolation only, but results in worse traffic conditions when it is part of a system of closely-spaced intersections.
- Preliminary Plans are for a new interchange access point at Gude/I-270 will likely result in increased volumes along Gude Drive. It is unknown how many new trips will divert to Gude and from where they will divert. Once the new volumes for the interchange have been determined, re-evaluating the impacts to the Gude intersection at MD 355 is recommended.

Changes to travel time for buses in the BRT lanes, between the No-build scenario and the Option 4 scenario, are negligible because these buses are in dedicated lanes and have no queue/congestion-related delay. Any delay experienced by a bus in a BRT lane is signal-related for both the No-build scenario and the Option 4 scenario; accordingly, infrastructure improvements that add green time to the main line at one intersection won't materially affect the performance of BRT along the entire corridor. In order to reduce travel time for BRT buses in dedicated lanes, transit signal priority (TSP) would need to be applied or traffic signal timings would have to be coordinated to known and constant bus travel speeds ${ }^{2}$.

## Static Comparison of Options 4 and Options 6

Options 4 and 6 are similar in that both are Single Point Urban Interchanges (SPUIs), where Option 4 has Gude Drive through movements free via an overpass, while option 6 has MD 355 through movements free via an underpass. A comparison of delay, by movement, is shown for both options in the following table.

[^3]Table 2: Comparison of Delay, by movement, between Option 4 and Option 6

| Intersection | Movement* | Option 4 |  |  |  | Option 6 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Delay |  | Level of Service |  | Delay |  | Level of Service |  |
|  |  | AM | PM | AM | PM | AM | PM | AM | PM |
| MD 355 at Gude Drive | Overall | - | - | - | - | - | - | - | - |
|  | EBL | 55.4 | 71.4 | E | E | 72.5 | 73.5 | E | E |
|  | EBT | free | free | A | A | 61.2 | 54.3 | E | D |
|  | EBR | 0.6 | 0.7 | A | A | 0.6 | 0.7 | A | A |
|  | WBL | 46.3 | 34.2 | D | C | 57.0 | 83.0 | E | F |
|  | WBT | free | free | A | A | 65.2 | 19.8 | E | B |
|  | WBR | 0.3 | 0.3 | A | A | 0.3 | 0.4 | A | A |
|  | NBL | 82.5 | 72.9 | F | E | 69.3 | 71.1 | E | E |
|  | NBT | 59.7 | 32.9 | E | C | free | free | A | A |
|  | NBR | 0.2 | 0.4 | A | A | 0.2 | 0.4 | A | A |
|  | SBL | 25.0 | 65.8 | C | E | 25.7 | 29.0 | C | C |
|  | SBT | 32.7 | 17.0 | C | B | free | free | A | A |
|  | SBR | 12.6 | 11.8 | B | B | 36.5 | 40.5 | D | D |

As shown in Table 2, almost all movement have "passing" LOS of E or better, with the exception of the Northbound left turn in AM peak hour and the westbound left turn in the PM peak hour. Excluding the uncontrolled eastbound/westbound movements, Option 4 is expected to operate at an LOS C in the AM and PM peak hours. Excluding the uncontrolled northbound/southbound movements, Option 6 is expected to operate at an LOS C in the AM and LOS D in the PM.

The static delay experienced for the BRT under Option 6 would be zero, given that Northbound Movements and southbound movements are free. Under Option 4 the Northbound and Southbound delay for BRT would depend on the ability to coordinate adjacent signals. For example, heading northbound in the PM, if the College Parkway signal and the Gude Drive signal are coordinated, then the BRT bus would arrive at Gude Drive with a "green light" already waiting for it. Similarly, if the BRT signal had TSP, then the bus would also have zero seconds of static delay due to the intersection.

## Spot Emissions at Gude

Simulated Emissions were evaluated at the intersection of Gude Drive at MD 355, comparing the No Build option with Option 4. Note, that this this comparison only accounts for the peak hours, and does not factor in important criteria, such as percent buses and percent heavy vehicles. Emissions were based on SimTraffic's internal estimate for Fuel Consumption, which itself is based on: vehicle miles traveled, total signal delay, vehicle stops per hour, and free flow speed, and is consistent across other simulations programs.

Table 3: Peak Hour Emissions

| Emission Particulate | No Build |  | Option 4 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Grams in AM Peak Hour | Grams in PM Peak Hour | Grams in AM Peak Hour | Grams in PM Peak Hour |
| HydroCarbons | 140 | 178 | 100 | 108 |
| Carbon Monoxide | 4932 | 5654 | 4265 | 4715 |
| Nitrogen Oxides | 412 | 542 | 338 | 373 |

## Findings:

1. The current congestion standard for Gude/MD 355 is 63 seconds and is expected to be exceeded by 2040 in the Alternative 1 Land Use Plan. Based on the Highway Capacity Manual (HCM) methodology, the AM and PM peak hour delays are expected to be 132 seconds and 117 seconds in the AM and PM peak hour, respectively.
2. Of the six alternatives tested only Option 4 - the Gude Drive overpass - met the congestion standard. However, while the SPUI (option 6) does not meet the congestion standard, MD 355 through-traffic is uncontrolled (i.e. it has no delay). This lack of delay on the main line is not reflected in the Synchro outputs for congestion.
3. Options 3 through 6 remove one or more phases from the existing four-phase signal operation. Options 1 and 2 don't remove any signal phase, but add travel lanes on MD 355, such that eastbound and westbound right turns are no longer controlled by the signal, but operate "freely."
4. Options that remove a phase allow the existing signal timing to be reallocated to the remaining phases such that the overall signal can operate more efficiently. This has a positive impact, not only on overall traffic congestion, but also on BRT traffic (assuming no queue jumps are planned). All options, except for Option 2, benefit BRT traffic by reducing northbound and/or southbound traffic delay for all vehicles.
a. Additionally, Option 3 and Option 6 would allow for center-median running BRT line, because the northbound and southbound left turn movements would be relocated.
5. Option 6 is the most expensive option and most disruptive to adjacent commercial properties, requiring multiple full parcel takes and several strip takes (property takes involving a thin sliver of the land). Where only strips of parcels are taken, commercial driveways would have to be reconstructed.
6. All options will require a significant amount of utility relocation.
7. Option 3 and Option 6 have the largest impact to both 1) large tree removal; and 2) increase in impervious surface.
8. The impacts to pedestrian safety and convenience vary across all options. For example, Option 3 would allow for all four legs to have crossings and would even allow for pedestrian refuge island to break up the crossings. Alternatively, both the SPUI (option 6) and Option 4 would require pedestrians to cross MD 355 via an elevated structure; the sidepaths along Gude Drive and MD 355 would be gradeseparated at the intersection, making going from one path to the other an inconvenient and cumbersome endeavor. Options 1 and 2 retain at-grade pedestrian crossings, however both widen MD 355, making the crossing longer for cyclists and pedestrians.
9. Improving traffic at Gude Drive at MD 355 in isolation does little to improve traffic flow in general purpose travel lanes through the corridor. Downstream congestion prevents improvements at Gude/MD 355 from having any residual impacts through the corridor.
10. Improving Gude Drive at MD 355 does not improve BRT operations through the corridor, since the NoBuild option has no congestion-related delay, due to the dedicated BRT lanes. The only delay is due to the signal, but TSP or signal coordination can reduce the signal delay to zero.
11. Preliminary Plans are for a new interchange access point at Gude/I-270 will likely result in increased volumes along Gude Drive. Once the new volumes for the interchange have been determined, reevaluating the impacts to the Gude intersection at MD 355 is recommended.
12. Improving MD 355 at Gude Drive intersection through physical reconstruction is not recommended if the improvement will only be made in isolation along the corridor, as no significant changes in peak hour (peak direction) travel time will be achieved.
\& ASSOCIATES
Engineering Innovative Solutions

| Option |  | Name | Description of how th | Intersection Operates |
| :---: | :---: | :---: | :---: | :---: |
| Existing Conditions |  |  | All Turn Movements are controlled by the traffic Signal, with the exception of the Northbound Right Turn on Gude Drive, which is a free movement. There are four phases: Northbound and Southbound traffic has a green light at the same time. Northbound and Southbound left-turning traffic has a green light at the same time. Eastbound and Westbound traffic has a green light at the same time. Easthbound and Westbound left-turning traffic has a green light at the same time. | Existing 4-Phase Signal |
| At grade | 1 | 80 sec delay Standard | Eastbound and Westbound right turns become "free" movements, where each has their own receiving lane on MD 355. Additionally, the southbound right turn lane is converted to a shared through/right lane. Northbound MD 355 is widened to add one curbside travel lane. Southbound MD 355 is widened to add one curbside travel lane. |  |
|  | 2 | 100 sec delay Standard | Eastbound and Westbound right turns become "free" movements, where each has their own receiving lane on MD 355. Northbound and Southbound MD 355 are widened to add one curbside travel lane. |  |
|  | 3 | Northwest Jug <br> handle | All left turn movement are removed from the intersection of MD 355 at Gude Drive. All-Left turn movements become two-stage turn movements via an exaggerated jug handle at the northwest quadrant of the intersection. The southbound right turn lane is removed due to redundancy. |  |
| $\begin{gathered} \text { Grade } \\ \text { Separated } \end{gathered}$ | 4 | East/West Overpass | Eastbound and Westbound through movements become uncontrolled and free via an overpass over MD 355. Eastbound and Westbound right turns become "free" movements, where each has their own receiving lane on MD 355 . Northbound and Southbound MD 355 are widened to add one curbside travel lane. | Option 4: 3-Phase Signal <br> 」 لL |
|  | 5 | North/South Left Turn Flyovers | Northbound and southbound left turn lanes become flyover ramps onto westbound and eastbound Gude, respectively. Southbound flyover ramp transitions directly into the curbside eastbound travel lane near the bridge over the CSX tracks. Northbound flyover ramp transitions into a new acceleration lane on the north side of Gude Drive. Northbound right turn lane becomes a yield-only control, with a wider channelized right turn thru existing property | Option 5: 3-Phase Signal |
|  | 6 | Single Point <br> Urban Interchange (SPUI) | Gude Drive overpass is constructed above MD 355, whose southbound and northbound through movements will be free. Left turn movements from MD 355 will ramp up to the Gude overpass and be controlled. Gude Drive through movements and left turn movements will be controlled | Option 6: 3-Phase Signal |

\& ASSOCIATES
ngineering innovative Solutions

| Option |  | Name | Descripion | Trafic |  |  | cost | Properylmpats |  | Envirommental and uvility mpats |  |  | Safety $\begin{aligned} & \text { Pedestrian Safety }\end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Traficioperations Changes | Trafic oeay | ${ }_{\text {BrT Impats }}$ | Captal cost | row Impa | rcial Diveway acess Inpacts | ange in Imperious | Utility | est mpats |  |
|  |  |  |  | Signal Phases Removed or movements made free (uncontrolled) | Changes to $A M /(P M)$ peak hour delay |  | Rough Order of Magnitude Construction Cost of Proje | $\begin{aligned} & \text { How many parcels are likely } \\ & \text { to be affected? Strip takes } \\ & \text { (where only a sliver of a } \\ & \text { property is taken) or full } \end{aligned}$ takes? | iveways are removed or adjusted? | Apporximate chang in | Aboveground utilitrelocation | \#of Tres sem | $\begin{gathered} \text { To what extent are } \\ \text { pedestrian conditions } \\ \text { improved? } \end{gathered}$ |
| Atgrade | 1 | 80sec delay Standard |  | (2ater | 2040 Intersection Delay is reduced from 132 sec in the AM and 117 sec in the PM to 76 seconds and 74 seconds, respectively. |  | SMilion | $\begin{aligned} & 4 \text { Strip Takes; } \\ & \text { 0 Full Takes } \end{aligned}$ | dorivenays adissed | 25,000 additional square feet of impervious surface |  | 6 |  |
|  | 2 | 100 secedelay standard | Eastbound and Westbound right turns become "free" movements, where each has their own receiving lane on MD 355. Northbound and Southbound MD 355 are widened to add one curbside travel lane. |  | 2040 Intersection Delay is reduced from 132 sec in the AM and 117 sec in the PM to 99 seconds and 75 seconds, respectively. |  | -5smilion | $\begin{aligned} & 4 \text { Strip Takes; } \\ & 0 \text { Full Takes } \end{aligned}$ | Adrivenys adiusted |  |  | 5 | Single lane Widening requires additional crossing distance for pedestrians crossing the south leg of the intersection. Free right turn tend to occur at higher speeds than yield-control right turns; this impacts pedestrian crossing in front of right-turning vehicles that turn right on red. |
|  | 3 | Northwestug hande |  | Northbound/southbound left-turn movements are removed from the MD 355/Gude Intersection. Eastbound/Westbound left-turn movements are removed from the MD 355/Gude Intersection. These four turn movements reduce the signal operation from 4 phases down to 2. | 2040 Intersection Delay is reduced from 132 sec in the AM and 117 sec in the PM to 70 seconds and 40 seconds, respectively. However, this requires the creation of a new signal (with added delay) along Gude Drive west and redirected traffic to a lightly-used signal at MD 355/Lexus Dealership. |  | Si5Milion | 6 Strip Takes; 0 Full Takes | driveewys adjusted |  |  | ${ }_{5}$ |  |
| $\left\|\begin{array}{c} \text { crade } \\ \text { Separate } \\ d \end{array}\right\|$ | 4 |  |  | East and West through movements would be uncontrolled, reducing the number of signal phases from 4 to 3. | 2040 Intersection Delay is reduced from 132 sec in the AM and 117 sec in the PM to 33 seconds and 26 seconds, respectively. This delay does not average in the EB and WB Gude Drive movements that are now free. |  | 25 Mmilion | $\begin{aligned} & 3 \text { Strip Takes; } \\ & \text { O Full Takes } \end{aligned}$ | I driveway removed from Eastbound Gude Drive | 15,000 additional suare feet of |  | ${ }^{24}$ |  |
|  | 5 | North/Sout heft Turn flyoers |  | North and South left turn movements would be uncontrolled, reducing the number of signal phases from 4 to 3. |  |  | -525Milion | $\underbrace{1 \text { Istip Takess }}$ 2ful | 2 drivenass removed |  |  | 4 |  |
|  | 6 | Single Point Uran inerchange (spu)\| |  | the number of signal phases from 4 to 3 , are the heaviest movements at the intersection have the biggest operation impact. | 2040 Intersection Delay is reduced from 132 sec in the AM and 117 sec in the PM to 83 seconds and 58 seconds, respectively. This delay does not average in the NB and SB MD 355 movements that are now free. |  | 50-575Milion | $\begin{aligned} & 6 \text { Strip Takes; } \\ & 5 \text { Full Takes } \end{aligned}$ | 11 drivewzy semoved |  |  | 92 | All east/west pedestrian traffic - including Carl Henn trail - will have to cross the intersection above-grade. This will require two signalized crossings as opposed to the one current crossing. |








## 5. Non-Auto Driver Mode Share (NADMS) Goals

The Draft Plan recommends supporting a 50 percent NADMS goal for residents living in the Metro Station Policy Area for all home-based work trips. The production side of the Department's Travel/4 Travel Demand network indicates that there is only a 6.6 percent difference between what would likely occur following build out in 2040 and the 50 percent goal. This is due to planned residential units' proximity to the high-quality transit coded in the Travel/4 model, including the existing WMATA Metrorail Red Line Metro Station, MD 355 Bus Rapid Transit Service, and the Corridor Cities Transitway.

Development will still be required to participate in the Greater Shady Grove Transportation Management District (TMD) and will be conditioned to meet the new regulations of approved Bill 36-18 for a "Project-based" TDM Plan. Because the Plan Area is currently within a "red" policy area, any project equal to or less than 40,000 square feet will be required to:

- Appoint a transportation coordinator;
- Notify the Montgomery County Department of Transportation (MCDOT) of project occupancy;
- Provide access to the project for distribution of Transportation Demand Management (TDM) materials, and;
- Display TDM related materials in a highly visible location.

Projects greater than 40,000 square feet in the Metro Station Policy Area will be required to:

- Develop and fund strategies to meet a NADMS goal;
- Conduct independent monitoring to determine compliance, and;
- Revise strategies and/or increase funding if compliance cannot be achieved within six years.

Parking strategies may be suggested and employed. The Planning Department can encourage Applicants to pursue such strategies in order to achieve the Plan's NADMS goals during the regulatory review process for new development.

Beyond the "red" Metro Station Policy Area, the Plan recommends a 35 percent NADMS goal for residents living within the Sector Plan area. Planning Department staff do not anticipate significant new residential projects beyond the Metro Station Policy Area; however, if such projects were to be realized, they would be subject to the thresholds and requirements of Bill 36-18 for properties in the orange tier. The provision of new transit options and pedestrian and bicycle facilities will improve non-auto access and encourage residents living within the existing single-family home communities to use alternate modes of transportation. Travel Demand Modeling efforts suggest that the 35 percent goal could be achieved.

On the attraction side, the model suggests that roughly 12.5 percent of commuters destined for the Plan Area commute by a mode other than car today. Because enhanced options will improve in the county at large, and because Bill $36-18$ will require significantly more TDM agreements across the County, a NADMS target of 25 percent was used for modeling purposes. The notes for Table 12 show modeled NADMS production and attraction.

## 6. Infrastructure Prioritization Scheme Plan to Achieve (NADMS) Goals

Traffic congestion generally represents a state of equilibrium, where the supply of roadway facilities is completely used, and congestion has reached a point where user trips are deferred to different times, links, or modes in a transportation network. If widening projects provide more capacity, a facility is no longer in a state of equilibrium and the demand that had been deflected to other links and times shifts back to the widened facility, consuming the additional supply. Consumption of the new supply continues until equilibrium -in this case, a state of returned congestion-is restored. The "generated demand" that consumes new supply is often referred to as "induced demand."

The theory of induced demand is well documented in traffic research. Todd Litman of the Victoria Transport Policy Institute provides a sound overview with a citation list covering research over the last three decades. ${ }^{4}$ Litman's literature review finds that induced demand reduces the benefits of roadway expansion and increases external costs.

The County currently promotes two policies which work against one another's goals. The County's desire for transportation demand management, supported by Planning Department generated NADMS goals, is diminished by its current Subdivision Staging Policy, which dictates that new development must provide additional vehicular capacity if proximate conditions are above "tolerable" levels of average intersection delay. Research suggests that when roadway capacity is increased, individuals who had previously deferred to other links, schedules, or modes with less impedance will consume the additional supply. Allowing vehicular mobility to maintain is competitiveness through the supply of additional roadway capacity reduces the likelihood that NADMS goals will be achieved.

For this reason, the Shady Grove Minor Master Plan Amendment supports the provision of alternative, non-vehicular mitigation when required of new development. In priority order, these include:

- Support for transit projects, including MD 355 BRT, the Corridor Cities Transitway, or other projects;
- Support for improvements that improve safety for non-motorists;
- Support for improvements that improve comfort or convenience for non-motorists, and;
- Support for roadway improvements that improve safety for drivers.

Each of these elements should be considered prior to the provision of an improvement that increases vehicular capacity.

## 7. Complete Streets Guide Typologies

Concurrent with the subject amendment, the Montgomery County Department of Transportation (MCDOT), the Department of Permitting Services (DPS), and Montgomery Planning initiated a joint project to develop a "Complete Streets Design Guide." The purpose of this document is to:

- To articulate a consistent, countywide vision for street design;
- Create a one-stop shop for all aspects of street design;
- Address best practices in fire access, stormwater management, use of different materials, and;
- Increase flexibility while maintaining minimum standards and continuous facilities.

[^4]The Guide will develop new street typologies, which are driven by the context of desired adjacent land uses and design rather than by function alone. Each street typology will have associated priorities and design parameters. Table 15 provides suggested typology classifications to consider for the Plan area once the Guide has been approved and adopted based on the draft parameters available at the time of this writing. This appendix excludes descriptions of the typologies and associated draft parameters to avoid confusion as the final document has not yet been released and may include minor changes.

Table 15 - Suggested Future Complete Street Typology Designations

| Roadway | Limit 1 | Limit 2 | Proposed Complete Streets Designation |
| :---: | :---: | :---: | :---: |
| Proposed in Plan as Major Highways |  |  |  |
| MD 355, Frederick Avenue | City of Gaithersburg City Limits (500' north of I-370) | Ridgemont Avenue | Boulevard |
| MD 355, Frederick Avenue | Ridgemont Avenue | Indianola Drive | Town Center Boulevard |
| MD 355, Frederick Avenue | Indianola Drive | Southern Plan Boundary | Boulevard |
| Gude Drive | City of Rockville Limits | Eastern Plan Boundary | Boulevard |
| Shady Grove Road* | Western Plan Boundary | I-370 Access Ramps | Boulevard |
| Shady Grove Road | I-370 Access Ramps | Midcounty Highway | Boulevard |
| Midcounty Highway | Goshen Road | Shady Grove Road | Major Highway |
| Metro Access Road | Intercounty Connector (MD 200) | Future WMATA Street (1,350' north of Redland Road) | Major Highway |
| Proposed in Plan as Arterials |  |  |  |
| Crabbs Branch Way | Redland Road | Indianola Drive | Neighborhood Connector |
| Crabbs Branch Way | Indianola Drive | Gude Drive | Boulevard |
| Redland Road | Crabbs Branch Way | Needwood Road (northern access) | Neighborhood Connector |
| Proposed in Plan as Minor Arterials |  |  |  |
| Redland Road | Needwood Road (northern access) | Muncaster Mill Road | Neighborhood Connector |
| Proposed in Plan as Business District Streets |  |  |  |
| Redland Road | MD 355 | Somerville Drive | Boulevard |
| Redland Road | Somerville Drive | Crabbs Branch Way | Neighborhood Connector |
| Crabbs Branch Way | Redland Road | Shady Grove Road | Town Center Boulevard |


| Roadway | Limit 1 | Limit 2 | Proposed Complete Streets Designation |
| :---: | :---: | :---: | :---: |
| Proposed in Plan as Business District Streets |  |  |  |
| Crabbs Branch Way | Shady Grove Road | 1000 ' north of l-370 | Town Center Boulevard |
| Indianola Drive | MD 355 | Crabbs Branch Way | Neighborhood Connector |
| King Farm Boulevard Extended | MD 355 | Metro Station | Town Center Boulevard |
| Somerville Drive Extended | King Farm Boulevard Extended | Redland Road | Town Center Street |
| Somerville Drive | Redland Road | Paramount Drive | Town Center Street |
| Paramount Drive | MD 355 | Somerville Drive | Town Center Street |
| Columbus Avenue Extended | Gramercy Boulevard | Redland Road | Town Center Street |
| Street A | Columbus Avenue Extended | Metro Access Road | Town Center Street |
| Metro South Neighborhood | MD 355 | Somerville Drive | Town Center Street |
| Metro Access Road | Redland Road | Chieftan Avenue | Town Center Street |
| Proposed in Plan as Primary Residential Streets |  |  |  |
| Crabbs Branch Way | 1000 ' north of I-370 | 118' west of Castenea Lane | Neighborhood Connector |
| Indianola Drive | Crabbs Branch Way | Eastern Roadway TerminusGude Trail | Neighborhood Street |
| Monona Drive | Crabbs Branch Way | Indianola Drive | Neighborhood Street |
| Amity Drive | 118' west of Castenea Lane | Washington Grove Lane | Neighborhood Connector |
| Needwood Road (near Blueberry Hill Local Park) | Redland Road | Blueberry Hill Local Park | Neighborhood Connector |
| Briardale Road | Shady Grove Road | 1600' north of Shady Grove Road | Neighborhood Street |
| Miller Fall Road | Midcounty Highway | Shady Grove Middle School | Neighborhood Street |
| Epsilon Drive | Shady Grove Road | Amity Drive | Neighborhood Street |
| Proposed in Plan as Industrial Roads |  |  |  |
| Oakmont Avenue | Northern Plan Boundary | Shady Grove Road | Industrial Street |

## 8. Addendum - Updated Pedestrian Level of Comfort Analysis

The Pedestrian Level of Comfort, or "PLOC," analysis that was shared with the public during the planning process has since been updated to reflect the Department's new methodology. The new methodology breaks up facilities into seven different comfort levels, scored " 1 " (very comfortable) to " 4 " (unacceptable), including half scores (for example, " 2.5 " is somewhat comfortable). Facilities' scores are broken out by urban and non-urban contexts.

Factors impacting scoring include:

- Presence and width of buffering between the road and the facility, including landscaping, parking lanes, and separated bicycle facilities;
- Posted speed;
- Quality of crossing;
- Number of lanes crossed;
- Presence of protected pedestrian phases, leading pedestrian phases, or rapid flashing beacons;
- Lighting;
- American with Disabilities Act best practices, including:
- Facility width
- Presence of tripping hazards
- Cross slope
- Presence of obstructions
- Presence and quality of detectable warning strips
- Ramp quality
- Presence of an accessible pushbutton

Figure 37 depicts the updated PLOC scores for the Plan Area. Figure 38 shows connectivity to WMATA's Shady Grove Metrorail Station and Figure 39 shows how connectivity is degraded due to lack of comfortable sidewalk facilities. The update largely impact crossing scores for Redland Road, Shady Grove Road, and Crabbs Branch Way. Connectivity to the Metro is greatly reduced if one assumes that pedestrians will only travel on comfortable segments. Based on the analysis, the only comfortable walks to metro are within 15 minutes. This is because of roadway crossing conditions in the Plan Area. Table 16 shows the number of dwelling units connected to the Metro Station.

Table 16 - Pedestrian Level of Comfort - Dwellings Comfortably Connected to Metro: May 2020

|  | Dwelling <br> Units | Dwelling Units Connected <br> via Comfortable Facilities | Percent <br> Connected |
| :---: | :---: | :---: | :---: |
| 15 Minute <br> Walkshed | 1432 | 748 | $52 \%$ |
| 20 Minute <br> Walkshed | 2798 | 748 | $27 \%$ |
| 25 Minute <br> Walkshed | 4270 | 748 | $18 \%$ |
| 30 Minute <br> Walkshed | 5015 | 748 | $15 \%$ |

Figure 37 - Updated Pedestrian Level of Comfort Analysis: May 2020


Figure 38 - Updated Pedestrian Connectivity to Metro: May 2020


Figure 39 - Updated Pedestrian Connectivity to Metro on Comfortable Segments Only: May 2020



[^0]:    ${ }^{1}$ The Pedestrian Level of Comfort methodology was updated by the Department following the Shady Grove Master Plan planning process. The new information is included as an addendum to this appendix. The update

[^1]:    ${ }^{2}$ Percentage is based on total number of records provided by MCPD, supplemented by geospatial data.

[^2]:    ${ }^{3}$ Montgomery County Department of Transportation, "Phase 2 Corridor Summary Report," October 2019 Draft.

[^3]:    1 Because the BRT network being analyzed ends at College Parkway, any congestion that may exist south of that intersection is not being incorporated into the traffic model.
    2 Coordination of two signals is highly unlikely if there is a bus stop in between them, as boarding/alighting times can vary significantly.

[^4]:    ${ }^{4}$ Litman,Todd. "Generated Traffic and Induced Travel: Implications for Transport Planning," March 2019.

