EXPEDITED
MONTGOMERY COUNTY HISTORIC PRESERVATION COMMISSION
STAFF REPORT

Address: 21414 Georgia Avenue, Brookeville
Meeting Date: 8/12/2020

Resource: Master Plan Site #23/45
Report Date: 8/5/2020
(Greenwood Miller’s Cottage and Mill Site)

Public Notice: 7/29/2020

Applicant: Montgomery Parks
Tax Credit: N/A
(Scott Whipple, Agent)

Review: HAWP

Case Number: 23/45-20A

PROPOSAL: Demolition of accessory buildings

STAFF RECOMMENDATION:

☑ Approve
☐ Approve with conditions

ARCHITECTURAL DESCRIPTION:

SIGNIFICANCE: Individually Listed Master Plan Site #23/45, Greenwood Miller’s Cottage and Mill Site

DATE: Mid 1800s

Fig. 1: Subject property.
PROPOSAL:

The applicant proposes to remove two (2) non-historic accessory structures from the subject property. The structures to be removed include:

- One (1) small storage shed/playhouse.
 - Dilapidated structure with collapsed roof and the unsound floor.
 - Frame structure with log veneer.
 - Non-historic 20th century structure with dimensional lumber and wire nails.

- One (1) barn/workshop.
 - Deteriorated and in poor condition, having been overtaken by the surrounding forest.
 - Due to its unsafe condition, the structure has been fenced to prevent access for some time.
 - A hazmat investigation found materials containing asbestos.
 - Structure likely dates to post-1926 (perhaps 1940s).

APPLICABLE GUIDELINES:

Policy On Use of Expedited Staff Reports for Simple HAWP Cases

IV. The Expedited Staff Report format may be used on the following type of cases:

2. Modifications to a property, which do not significantly alter its visual character.

3. Removal of accessory buildings that are not original to the site or otherwise historically significant.

Montgomery County Code; Chapter 24A-8

(b) The commission shall instruct the director to issue a permit, or issue a permit subject to such conditions as are found to be necessary to insure conformity with the purposes and requirements of this chapter, if it finds that:

(1) The proposal will not substantially alter the exterior features of an historic site or historic resource within an historic district; or

(2) The proposal is compatible in character and nature with the historical, archeological, architectural or cultural features of the historic site or the historic district in which an historic resource is located and would not be detrimental thereto or to the achievement of the purposes of this chapter; or

(3) The proposal would enhance or aid in the protection, preservation and public or private utilization of the historic site or historic resource located within an historic district in a manner compatible with the historical, archeological, architectural or cultural value of the historic site or historic district in which an historic resource is located; or

(4) The proposal is necessary in order that unsafe conditions or health hazards be remedied; or

(5) The proposal is necessary in order that the owner of the subject property not be deprived of reasonable use of the property or suffer undue hardship; or

(6) In balancing the interests of the public in preserving the historic site or historic resource located within an historic district, with the interests of the public from the use and benefit of the alternative proposal, the general public welfare is better served by granting the permit.
(c) It is not the intent of this chapter to limit new construction, alteration or repairs to any period or architectural style.

Secretary of Interior’s Standards for Rehabilitation

The Secretary of the Interior defines rehabilitation as “the act or process of making possible a compatible use for a property through repair, alterations, and additions while preserving those portions or features, which convey its historical, cultural, or architectural values.” The Standards are as follows:

2. The historic character of a property shall be retained and preserved. The removal of historic materials or alteration of features and spaces that characterize a property shall be avoided.

9. New additions, exterior alterations, or related new construction shall not destroy historic materials that characterize the property. The new work shall be differentiated from the old and shall be compatible with the massing, size, scale, and architectural features to protect the historic integrity of the property and its environment.

STAFF RECOMMENDATION:

Staff recommends that the Commission approve the HAWP application under the Criteria for Issuance in Chapter 24A-8(b), (1) & (2), having found that the proposal will not substantially alter the exterior features of the historic resource and is compatible with the purposes of Chapter 24A;

and with the Secretary of the Interior’s Standards for Rehabilitation #2 and 9;

and with the general condition that the applicant shall present the 3 permit sets of drawings, if applicable, to Historic Preservation Commission (HPC) staff for review and stamping prior to submission for the Montgomery County Department of Permitting Services (DPS) building permits;

and with the general condition that the applicant shall notify the Historic Preservation Staff if they propose to make any alterations to the approved plans;

and with the general condition that final project design details, not specifically delineated by the Commission, shall be approved by HPC staff or brought back to the Commission as a revised HAWP application at staff’s discretion.

Once the work is completed the applicant will contact the staff person assigned to this application at 301-563-3400 or michael.kyne@montgomeryplanning.org to schedule a follow-up site visit.
APPLICATION FOR
HISTORIC AREA WORK PERMIT
HISTORIC PRESERVATION COMMISSION
301.563.3400

APPLICANT:

Name: Montgomery Parks
Address: 8301 Turkey Thicket Dr.
Daytime Phone: 240.772.7036

E-mail: scott.whipple@montgomeryparks.org
City: Gaithersburg Zip: 20879
Tax Account No.: _______________________

AGENT/CONTACT (if applicable):

Name: Scott Whipple
Address: same
Daytime Phone: same

E-mail: scott.whipple@montgomeryparks.org
City: same Zip: same
Contractor Registration No.: _______________________

LOCATION OF BUILDING/PREMISE:

MIHP # of Historic Property: 23-45

Is the Property Located within an Historic District? __Yes/District Name: Greenwood Miller's Cottage
__No/Individual Site Name: Greenwood Miller's Cottage

Is there an Historic Preservation/Land Trust/Environmental Easement on the Property? If YES, include a map of the easement, and documentation from the Easement Holder supporting this application.

Are other Planning and/or Hearing Examiner Approvals /Reviews Required as part of this Application? (Conditional Use, Variance, Record Plat, etc.?) If YES, include information on these reviews as supplemental information.

Building Number: 21414 Street: Georgia Ave
Town/City: Brookville Nearest Cross Street:__________________________
Lot: _______ Block: _______ Subdivision: ______ Parcel: ______

TYPE OF WORK PROPOSED: See the checklist on Page 4 to verify that all supporting items for proposed work are submitted with this application. Incomplete Applications will not be accepted for review.

☐ New Construction ☐ Deck/Porch ☐ Shed/Garage/Accessory Structure
☐ Addition ☐ Fence ☐ Solar
☐ Demolition ☐ Hardscape/Landscape ☐ Tree removal/planting
☐ Grading/Excavation ☐ Roof ☐ Window/Door
☐ Other: _______________________

I hereby certify that I have the authority to make the foregoing application, that the application is correct and accurate and that the construction will comply with plans reviewed and approved by all necessary agencies and hereby acknowledge and accept this to be a condition for the issuance of this permit.

Scott Whipple 7.22.20

Signature of owner or authorized agent Date
Description of Property: Please describe the building and surrounding environment. Include information on significant structures, landscape features, or other significant features of the property:

MIHP form: "The Mill has been gone for many years and only a pile of rubble and a frame cottage, built in the 19th century, and now covered with stone from the ruins of the mill, remain...

On August 5, 1926, the various heirs ... sold the property... Presumably the mill had been torn down by this time, and the only significant structure remaining was the miller's cottage.

[The mill was sold again in 1942] Many of the concrete structures surrounding the house bear dates from the 1950s, thus leading to the conclusion that perhaps additional alterations to the property occurred during [this] ownership."

Description of Work Proposed: Please give an overview of the work to be undertaken:

Demolition of two non-contributing accessory structures, neither of which are identified in the survey documentation: 1) small storage shed/playhouse: The roof has collapsed and the floor is not sound. The building appears to be of log construction, but actually it is frame with a log veneer. It is pretty clearly twentieth century: dimensional lumber and wire nails. 2) barn/work shop, likely twentieth century, located toward the rear of the property some distance from the cottage. This building is in poor condition and sits unused; for some time it has been fenced to prevent access. A hazmat investigation found materials containing asbestos. It is being taken over by the surrounding forest and is deteriorating. Based on the survey documentation that I reviewed, it could post-date 1926 and possibly date to a building campaign on the property undertaken by owners who purchased it in the 1940s.
Work Item 1: Demo: shed

Description of Current Condition: The small frame shed's roof has collapsed, the floor has deteriorated.

Proposed Work: Demolition.

Work Item 2: Demo: barn/workshop

Description of Current Condition: Unused, fenced and overgrown. Deteriorating. Missing siding, exposing hazardous material-containing materials.

Proposed Work: Demolition. Demolition will include a tree protection plan, approved by Parks arborists.

Work Item 3:

Description of Current Condition:

Proposed Work:
HISTORIC AREA WORK PERMIT
CHECKLIST OF APPLICATION REQUIREMENTS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>New Construction</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Additions/Alterations</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Demolition</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Deck/Porch</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Fence/Wall</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Driveway/Parking Area</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Grading/Excavation/Landscaping</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Tree Removal</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Siding/Roof Changes</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Window/Door Changes</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Masonry Repair/Repoint</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Signs</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>
HISTORIC AREA WORK PERMIT APPLICATION

Application Date: 7/22/2020

Affidavit Acknowledgement
The Homeowner is the Primary applicant
This application does not violate any covenants and deed restrictions

Primary Applicant Information
Address 21414 GEORGIA AVE
BROOKEVILLE, MD 20833
Homeowner Montgomery Parks (Primary)

Historic Area Work Permit Details
Work Type DEMO
Scope of Work Application to demolish two non-contributing accessory structures.
ASBESTOS, LEAD PAINT AND RADON REPORT

FOR
21414 GEORGIA AVENUE
Brooksville, MD 20833

PREPARED FOR THE BENEFIT OF

MARYLAND NATIONAL CAPITAL PARKS AND PLANNING COMMISSION
16641 Crabbs Branch Way, Bldg. B
Rockville, MD 20855

BY

AIR, LAND AND WATER ENGINEERING, INC.
10017 Hackberry Lane, Suite 10
Columbia, MD 21046
Phone 410-997-0395
Fax 410-997-0278

AUGUST 13, 2014
ALWE PROJECT 14-3240
TABLE OF CONTENTS

1.0 CERTIFICATION ..2
2.0 BACKGROUND ..2
3.0 ASBESTOS SURVEY METHODOLOGY ..2
4.0 LEAD PAINT TESTING METHODOLOGY ..3
5.0 RADON TESTING METHODOLOGY ...3
6.0 RESULTS, CONCLUSIONS and RECOMMENDATIONS ..3
7.0 LIMITATIONS ..5

ATTACHMENTS

APPENDIX

Appendix A Asbestos Laboratory Results
Appendix B Asbestos Sample Location Sketch
Appendix C XRF Testing Results
Appendix D Radon Results
1.0 CERTIFICATION

Air, Land and Water Engineering, Inc. (ALWE) has performed an asbestos and lead paint survey at the residential building and three sheds located at 21414 Georgia Avenue, MD 20833.

Laurence T. Brand, PE Senior Engineer

date: 8/3/14

2.0 BACKGROUND

The Client requested that ALWE perform lead, asbestos, and radon testing at the address listed above. This survey was compared with a previously ALWE asbestos, mold and radon survey, with the ALWE report dated September 2, 2009 (ALWE 2009). The property includes a house and three sheds; an Electrical Shed (small), Storage Shed (medium), and Large Shed. Please note that the sheds were not part of the original survey to inspect. ALWE can provide removal specifications and provide removal monitoring for an additional fee.

3.0 ASBESTOS SURVEY METHODOLOGY

On May 12 and June 18, 2014, ALWE performed an asbestos survey (ALWE, 2014) to assess readily observable and readily accessible suspect asbestos containing materials (ACM) in the house and three sheds. The three sheds are designated Small Electrical Shed, Storage Shed, and Large Shed. The procedures utilized during our survey included: visual observations, material sampling, and laboratory analysis of suspect building materials. This asbestos survey was compared with the ALWE 2009 report done for Amtek by Laurence Brand.

This report presents the general description of samples, locations where samples were collected, and the results of laboratory analysis of these collected samples.

The survey began with a walk-through and visual survey of the building, followed by the selection of sampling areas and then the collection of bulk samples. Material sampling areas were grouped based on material homogeneity. A homogeneous area is one that contains material that is similar in texture and color. Consideration is also given to the material’s function and installation period.

ALWE representative, Derek Falzoi, a Licensed Asbestos Inspector, performed the asbestos survey. Samples of suspect asbestos containing materials were collected by ALWE at various locations and analyzed for asbestos content. The materials ALWE sampled in 2009 included pipe insulation, floor tile and mastic, textured ceiling, closet ceiling material, drywall joint compound, window caulk, and window glazing. The materials ALWE sampled in 2014 included floor tile and mastic, linoleum and mastic, ceramic tile mastic, roofing shingles on house, roofing shingles on sheds, siding shingle on shed, vapor barrier (behind siding shingle) on shed, roof vapor barrier, sink basin mastic, textured ceiling, plaster (skim and rough, behind textured ceiling), loose cardboard insulation, and yellow wall mastic dots.

Both sets of laboratory data are included in Appendix A. A figure with the House and 3 Sheds is included in Appendix B with the asbestos sample locations is provided in Appendix B.

The samples were analyzed using Polarized Light Microscopy (PLM) coupled with Dispersion Staining as outlined in the Environmental Protection Agency’s (EPA) “Method for the Determination of Asbestos in Bulk Materials” (EPA-600/R-93/116, July 1993). A listing of the sampled materials and their locations can be found in the table in section 5 and in the Laboratory Report forms, located in Appendix A.
4.0 LEAD PAINT TESTING METHODOLOGY

On May 9 and 12, and June 8 2014, ALWE representative Derek Falzoi, a Licensed Maryland Risk Assessor, performed lead-based paint testing on readily accessible and observable suspect lead-based painted surfaces, utilizing X-Ray Fluorescence (XRF) technology.

Maryland regulations define lead-based paint, as paint with more than 0.7 milligrams per square centimeter (mg/cm²) or greater than 0.5% lead by weight. The XRF test results and laboratory results are attached in Appendix C. This lead-based paint testing was limited to accessible surfaces.

The report shows each reading in the sequence that it was taken. The rooms and the surfaces in the rooms are designated on the report and each sample taken within that room was characterized as follows: the wall labeled A is the wall that faces the front of the building, going clockwise, the B wall is the next wall, C the next and the last wall is D. Please note that Wall A was designated at the Side Door Entrance into the House. The XRF results column, given in units of milligrams per square centimeter (mg/cm²), is recorded onto the data sheets directly from the XRF analyzer after each test. A negative number sometimes exists because of the nature of the algorithmic substrate correction features of the spectrum analyzer. This is not meant to be interpreted as a “negative” amount of lead, but rather an effect from the density of the substrate on the detectable amount of excited lead electrons, if any, which can be associated with the components reading.

5.0 RADON TESTING METHODOLOGY

On August 14, 2009, ALWE representative Mr. Laurence Brand was onsite to perform the initial radon testing. On this date, two radon detection canisters were placed side-by-side in the dining room (ALWE Room 3) of the house. The starting started on August 14, 2009, and ended on August 17, 2009. Since there was a high result, ALWE recommended a retest.

On August 27, 2009, ALWE representative Mr. Laurence Brand was onsite to perform the follow-up radon testing. On this date, two radon detection canisters were placed side-by-side in the dining room (ALWE Room 3) of the house, and the testing ran longer than the initial testing. The starting started on August 27, 2009, and ended on September 3, 2009.

On June 16, 2014, ALWE representative Mr. Derek Falzoi was requested by M-NCPPC to perform follow-up radon testing. On this date, two radon detection canisters were placed side-by-side in the Living Room (ALWE Room 5) of the house. The starting started on June 18, 2014, and ended on June 24, 2014.

The action level for radon at 4.0 picoCuries per liter of air (pCi/L). The three sets of radon results are located in Appendix D.

6.0 RESULTS, CONCLUSIONS AND RECOMMENDATIONS

Asbestos (ALWE 2014 unless otherwise noted)
The Ceramic Tile Mastic was found to contain 15% Chrysotile Asbestos. This material was found to be present in the ½ Bathroom (ALWE Room 8) throughout each of the lower walls (75 square feet), and at Walls C and D of ALWE Room 9 (25 square feet) for a total of 100 square feet present. This material was described by the laboratory as having a tan/cream/olive appearance. This material was not sampled in the original survey because the condition of this material had deteriorated, allowing the mastic to be visible. Please note that a similar material located at the Bathroom (ALWE 2) of Yellow Mastic Dots, located behind ceramic-designed metal outer walls had tested negative by laboratory analysis.
The Gray Wall Vapor Barrier (2nd Layer) was found to contain 30-50% Chrysotile Asbestos. This material is only present along each wall of the Large Shed. The outer (1st layer) material is described as exterior brick pattern siding shingle, and tested negative by laboratory analysis. ALWE initially sampled this material on May 12, 2014, and also took a confirmatory sample of this material on June 18, 2014, and both samples tested positive by laboratory analysis. Also on June 18, 2014, ALWE quantified this material and found that approximately 1,700 square feet was present. Please note that the samples were taken from exposed areas along Wall A of the Large Shed, and the material was observed to be in poor condition.

The Loose Pipe Insulation was found to contain 40-50% Chrysotile Asbestos. This material was observed present in the Basement of the House unattached to the piping and in poor condition in 2009. In 2014, ALWE collected two more samples. Each of the three samples collected tested positive by laboratory analysis. This material was observed present exposed beneath soil at the A/B tunnel, A/B corner of the room, and D/A corner of the room. There was approximately 20 square feet of this material observed on this date. Due to poor condition of the Basement and soil being present, more of this asbestos-containing material might be present. Additionally, this asbestos-containing pipe insulation may be hidden within the walls. ALWE advises not entering this Basement without proper protective equipment including full body disposable suits and appropriate respirators.

The Window Caulk associated with the exterior of the house was found to contain 3% Chrysotile Asbestos per ALWE (2009) report. The laboratory described its appearance as tan/white. ALWE (2014) collected two additional samples of this material which tested negative. Since there was one sample that had previously tested positive, this material should be considered an asbestos-containing material. Additionally, even though the sample was collected from around a window fixture, other fixtures with this caulking including doors and wall expansion joints should be considered asbestos-containing.

Lead Paint
Please note that Wall A refers to the Side Door entrance, oriented clockwise. According to the XRF test results, lead-based paint (LBP) was detected on the following surfaces:

Interior of House: The Front Doorjamb, Window Sashes and Casings, Baseboards, and Closet Door at the Side Entry/Kitchen (ALWE Room 1). The Door and Door Casing, Window Sashes and Casings, Wood Wall A, Closet Doors, Support Board, and Towel Rack Support Board in the Main Floor Bathroom (ALWE Room 2). The Door Casings and Cabinet in ALWE Room 3. The Door Casings, Window Components (Sash, Sill, Casing), and Cabinet in the Living Room (ALWE Room 5). The Doors and Doorjambs, Door Threshold at Wall B, Window Components (Sash, Sill, Casing), Walls B and D, and Ceiling at the Sun Room (ALWE Room 6). The Window Sashes and Casings, Baseboards, Floor, Closet Door Casing, Stair Treads and Risers at ALWE Room 7 including Stairwell. The Door Casings, Window Components (Sash, Sill, Casing), and Ceramic Walls at 2nd Floor ½ Bathroom (ALWE Room 8) and ALWE Room 9. The Window Components (Sash, Sill, Casing) at ALWE Room 10.

Exterior of House: The Door Casings, Doorjambs, Wall B (where paint is present), Front Porch Ceiling and Headers, Window Casings (except for those in the Sun Room), Window Lintels (metal and concrete), and Soffits associated with window sets.

Exterior of Small Electrical Shed: The Window Casings.

Locations of lead-based painted materials are provided in the sample results table located Appendix B.

Proper precautions should be taken to ensure that occupants, workers, and contractors are protected from the potential risks associated with lead-based paint during any renovation or demolition work. Removal of lead paint is not required before demolition of the structure.
Radon

The initial radon testing starting on August 17, 2009 had an average result of the two side-by-side canisters was 4.0 pCi/L. The EPA recommends fixing your home if the average of two short-term tests that is taken in the lowest level of the home suitable for occupancy, show radon levels that are equal or greater to the action level. ALWE recommended follow-up testing.

ALWE performed follow-up testing for week long period starting on August 27, 2009. The average result of the two side-by-side canisters was 3.9 pCi/L. The laboratory noted that radon concentrations were estimated due to excessive moisture at the test location, and recommended a re-test performed when the humidity in the location is lower.

The testing performed by ALWE starting on June 18, 2014 had an average result of the two side-by-side canisters was 3.6 pCi/L.

The results are still below the action level. Please note that the EPA recommends retesting if your living patterns change such as when remodeling is performed or if the Basement becomes occupied.

7.0 LIMITATIONS

All the professional opinions presented in this report are based solely on the scope of work conducted and sources referred to in our report. The data presented by ALWE in this report was collected and analyzed using generally accepted industry methods and practices at the time the report was generated. This report represents the conditions, locations, and materials that were observed at the time the fieldwork was conducted. No inferences regarding other conditions, locations, or materials, at a later or earlier time may be made based on the contents of the report. No other warranty, express or implied is made. ALWE’s liability and that of its contractors and subcontractors, arising from any services rendered hereunder, shall not exceed the total fee paid by the client to ALWE for this project. This report was prepared for the sole use of our client. The use of this report by anyone other than our client or ALWE is strictly prohibited without the expressed prior written consent of ALWE. Portions of this report may not be used independent of the entire report.
APPENDIX A

LABORATORY RESULTS
Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

<table>
<thead>
<tr>
<th>Sample</th>
<th>Description</th>
<th>Appearance</th>
<th>% Fibrous</th>
<th>% Non-fibrous</th>
<th>Asbestos % Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pipe Insulation in basement/crawlspace</td>
<td>Brown/White Fibrous Heterogeneous</td>
<td>25% Cellulose</td>
<td>0% Non-fibrous (other)</td>
<td>40% Chrysotile</td>
</tr>
<tr>
<td>2-Floor Tile</td>
<td>Toplayer kitchen 12x12 floor tile</td>
<td>White/Red/Beige Non-Fibrous Heterogeneous</td>
<td>5% Cellulose</td>
<td>52% Non-fibrous (other)</td>
<td>None Detected</td>
</tr>
<tr>
<td>2-Mastic</td>
<td>Toplayer kitchen 12x12 floor tile</td>
<td>Brown/Clear Fibrous Heterogeneous</td>
<td>5% Cellulose</td>
<td>85% Non-fibrous (other)</td>
<td>None Detected</td>
</tr>
<tr>
<td>3-Floor Tile</td>
<td>Bottom Layer</td>
<td>Gray/White Non-Fibrous Heterogeneous</td>
<td>2% Cellulose</td>
<td>55% Non-fibrous (other)</td>
<td>None Detected</td>
</tr>
<tr>
<td>3-Mastic</td>
<td>Bottom Layer</td>
<td>Brown/Clear Fibrous Heterogeneous</td>
<td>10% Cellulose</td>
<td>65% Non-fibrous (other)</td>
<td>None Detected</td>
</tr>
<tr>
<td>4-Floor Tile</td>
<td>12x12 FT in upstairs bathroom</td>
<td>Gray/Beige Non-Fibrous Heterogeneous</td>
<td>2% Cellulose</td>
<td>61% Non-fibrous (other)</td>
<td>None Detected</td>
</tr>
<tr>
<td>4-Mastic</td>
<td>12x12 FT in upstairs bathroom</td>
<td>Brown/Clear Fibrous Heterogeneous</td>
<td>15% Cellulose</td>
<td>75% Non-fibrous (other)</td>
<td>None Detected</td>
</tr>
</tbody>
</table>

Analyst(s)

George Malone (14)

Joe Centifenti, Laboratory Manager
or other approved signatory

Due to magnification limitations inherent in PLM, asbestos fibers in dimensions below the resolution capability of PLM may not be detected. The limit of detection: as stated in the method is 1%. The above test report relates only to the items tested and may not be reproduced in any form without the express written approval of EMSL Analytical, Inc. EMSL's liability is limited to the cost of analysis. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. Samples received in good condition unless otherwise noted. This report must not be used to claim product endorsement by NVLAP or any agency of the U.S. Government.

Samples analyzed by EMSL Analytical, Inc. Beltsville 10768 Baltimore Avenue, Beltsville MD NVLAP Lab Code 200293-0

Test Report PLM-7.12.0 Printed: 8/19/2009 2:07:32 PM
Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

<table>
<thead>
<tr>
<th>Sample</th>
<th>Description</th>
<th>Appearance</th>
<th>Non-Fibrous</th>
<th>Non-Fibrous Type</th>
<th>Asbestos % Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>DR Text Ceiling</td>
<td>White/Black</td>
<td>80%</td>
<td>Non-fibrous (other)</td>
<td>None Detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-Fibrous</td>
<td>20%</td>
<td>Mica</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heterogeneous</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>DR Text Ceiling</td>
<td>White/Black</td>
<td>10%</td>
<td>Cellulose</td>
<td>None Detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fibrous</td>
<td>70%</td>
<td>Non-fibrous (other)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heterogeneous</td>
<td>20%</td>
<td>Mica</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>DR Text Ceiling</td>
<td>Brown/White</td>
<td>10%</td>
<td>Cellulose</td>
<td>None Detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fibrous</td>
<td>65%</td>
<td>Non-fibrous (other)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heterogeneous</td>
<td>25%</td>
<td>Mica</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Closet in BR4 Ceiling material</td>
<td>Brown/White</td>
<td>90%</td>
<td>Cellulose</td>
<td>None Detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fibrous</td>
<td>10%</td>
<td>Non-fibrous (other)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heterogeneous</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Drywall Joint Compound BR4 Ceiling</td>
<td>Brown/White</td>
<td>20%</td>
<td>Cellulose</td>
<td>None Detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fibrous</td>
<td>55%</td>
<td>Non-fibrous (other)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heterogeneous</td>
<td>25%</td>
<td>Mica</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Window Caulk</td>
<td>Tan/White</td>
<td>2%</td>
<td>Cellulose</td>
<td>3% Chrysotile</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fibrous</td>
<td>95%</td>
<td>Non-fibrous (other)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heterogeneous</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Window Glazing</td>
<td>Gray/White</td>
<td>2%</td>
<td>Cellulose</td>
<td>None Detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-Fibrous</td>
<td>98%</td>
<td>Non-fibrous (other)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heterogeneous</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analyst(s)

George Malone (14)

Joe Centofanti, Laboratory Manager
or other approved signatory

Due to magnification limitations inherent in PLM, asbestos fibers in dimensions below the resolution capability of PLM may not be detected. The limit of detection as stated in the method is 1%. The above test report relates only to the items tested and may not be reproduced in any form without the express written approval of EMSL Analytical, Inc. EMSL's liability is limited to the cost of analysis. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. Samples received in good condition unless otherwise noted. This report must not be used to claim product endorsement by NVLAP or any agency of the U.S. Government.

Test Report PLM-7.12.0 Printed: 8/19/2009 2:07:33 PM

THIS IS THE LAST PAGE OF THE REPORT.
Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample Analysis

<table>
<thead>
<tr>
<th>Sample</th>
<th>Description</th>
<th>Appearance</th>
<th>Fibrous</th>
<th>Non-Fibrous</th>
<th>Asbestos</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Floor Tile</td>
<td>12X12 BEIGE W/STREAKS FT & MASTIC 1 SIDE ENTRY/KIT</td>
<td>Beige/Cream</td>
<td>60%</td>
<td>40%</td>
<td>Ca Carbonate, Non-fibrous (other)</td>
</tr>
<tr>
<td>1-Mastic</td>
<td>12X12 BEIGE W/STREAKS FT & MASTIC 1 SIDE ENTRY/KIT</td>
<td>Brown/Yellow Fibrous Homogeneous</td>
<td>3% Synthetic</td>
<td>97%</td>
<td>Non-fibrous (other)</td>
</tr>
<tr>
<td>2-Linoleum</td>
<td>BIEGE & BRN. SQ. PATTERN LINO. 8 2ND FL 1/2 BATH</td>
<td>Brown/Beige/Cream</td>
<td>55% Ca Carbonate</td>
<td>45%</td>
<td>Non-fibrous (other)</td>
</tr>
<tr>
<td>2-Mastic</td>
<td>BIEGE & BRN. SQ. PATTERN LINO. 8 2ND FL 1/2 BATH</td>
<td>Brown/Yellow Fibrous Homogeneous</td>
<td>35% Cellulose</td>
<td>12% Synthetic</td>
<td>Non-fibrous (other)</td>
</tr>
<tr>
<td>3</td>
<td>CERAMIC TILE MASTIC 9 RM WALL A</td>
<td>Tan/Cream/Olive Fibrous Homogeneous</td>
<td>85%</td>
<td>15% Chrysotile</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>BLK. ROOF SHINGLES UNDER METAL UPPER ROOF EXT- HOUSE DIA CORNER</td>
<td>Brown/Gray/Black Fibrous Homogeneous</td>
<td>40% Cellulose</td>
<td>10% Synthetic</td>
<td>40% Non-fibrous (other)</td>
</tr>
</tbody>
</table>

Analyst(s)

George Malone (20)

Joe Centifanti, Laboratory Manager or other approved signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-fibrous organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Reporting limit is 1%.

Samples analyzed by EMSL Analytical, Inc. Beltsville, MD NVLAP Lab Code 200293-0

Initial report from 05/15/2014 05:43:37

Test Report PLM-7.28.9 Printed: 5/15/2014 5:43:37 AM
Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

<table>
<thead>
<tr>
<th>Sample</th>
<th>Description</th>
<th>Appearance</th>
<th>Non-Asbestos</th>
<th>Asbestos</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>BLK. ROOF SHINGLES UNDER METAL UPPER ROOF EXTERIOR - ELEC. SHED</td>
<td>Brown/Gray/Black Fibrous Homogeneous</td>
<td>30% Cellulose 20% Synthetic</td>
<td>None Detected</td>
</tr>
<tr>
<td></td>
<td>191404174-0005</td>
<td></td>
<td>5% Mica 45% Non-fibrous (other)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>BLK. ROOF SHINGLES NO METAL ROOF EXTERIOR - STORAGE SHED</td>
<td>Gray/White Fibrous Homogeneous</td>
<td>35% Glass 20% Quartz</td>
<td>None Detected</td>
</tr>
<tr>
<td></td>
<td>191404174-0006</td>
<td></td>
<td>45% Non-fibrous (other)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>EXT. CAULKING EXT. HOUSE WALL D AROUND WINDOWS</td>
<td>Gray/Tan/White Fibrous Homogeneous</td>
<td>5% Cellulose 15% Quartz</td>
<td>None Detected</td>
</tr>
<tr>
<td></td>
<td>191404174-0007</td>
<td></td>
<td>80% Non-fibrous (other)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>EXT. WINDOW GLAZING LARGE SHED WALL A</td>
<td>Gray/White Fibrous Homogeneous</td>
<td>3% Cellulose 97% Non-fibrous (other)</td>
<td>None Detected</td>
</tr>
<tr>
<td></td>
<td>191404174-0008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>EXT. BRICK PATTERN SIDING SHINGLE WALL A</td>
<td>Gray/Red/Black Fibrous Homogeneous</td>
<td>40% Cellulose 20% Synthetic</td>
<td>None Detected</td>
</tr>
<tr>
<td></td>
<td>191404174-0009</td>
<td></td>
<td>10% Mica 30% Non-fibrous (other)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>GRAY VAPOR BARRIER WALL A</td>
<td>Brown/White/Black Fibrous Homogeneous</td>
<td>30% Cellulose 20% Synthetic</td>
<td>None Detected</td>
</tr>
<tr>
<td></td>
<td>191404174-0010</td>
<td></td>
<td>20% Non-fibrous (asbestos) 30% Chrysotile</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>EXT. ROOF VAPOR BARRIER LARGE SHED WALL D</td>
<td>Brown/Gray/Black Fibrous Homogeneous</td>
<td>45% Cellulose 15% Synthetic</td>
<td>None Detected</td>
</tr>
<tr>
<td></td>
<td>191404174-0011</td>
<td></td>
<td>25% Non-fibrous (other)</td>
<td></td>
</tr>
</tbody>
</table>

Analyst(s):

George Malone (20)

Joe Certifone, Laboratory Manager
or other approved signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-triable organically bound materials present a problem matrix and therefore EMSL recommends gamma-ray reduction prior to analysis. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request. Unless requested by the client, building materials manufactured with multiple layers (e.g. linoleum, wallboard, etc.) are reported as a single sample. Reporting limit is 1%.

Samples analyzed by EMSL Analytical, Inc. Beltsville, MD NVLAP Lab Code 200203-0

Initial report from 05/15/2014 05:43:37

Test Report PLM-7.28.9 Printed: 5/15/2014 5:43:37 AM

19

<table>
<thead>
<tr>
<th>Sample</th>
<th>Description</th>
<th>Appearance</th>
<th>% Fibrous</th>
<th>% Non-Fibrous</th>
<th>Asbestos</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>WHT. SINK BASIN MASTIC 1 SINF FNTRY/KIT</td>
<td>Beige/Cream</td>
<td>45%</td>
<td>25% Mica</td>
<td>None Detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fibrous</td>
<td></td>
<td>30% Non-fibrous (other)</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>TEXTURED CEILING & PLASTER 3 RM AT CEILING</td>
<td>White</td>
<td></td>
<td>30% Mica</td>
<td>None Detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-Fibrous</td>
<td></td>
<td>70% Non-fibrous (other)</td>
<td></td>
</tr>
<tr>
<td>13-Rough</td>
<td>TEXTURED CEILING & PLASTER 3 RM AT CEILING</td>
<td>Brown/Beige</td>
<td></td>
<td>50% Quartz</td>
<td>None Detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-Fibrous</td>
<td></td>
<td>60% Non-fibrous (other)</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>TEXTURED CEILING & PLASTER 3 RM AT CEILING</td>
<td>Brown/White</td>
<td>12%</td>
<td>30% Mica</td>
<td>None Detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fibrous</td>
<td></td>
<td>58% Non-fibrous (other)</td>
<td></td>
</tr>
<tr>
<td>14-Rough</td>
<td>TEXTURED CEILING & PLASTER 3 RM AT CEILING</td>
<td>Brown/Beige</td>
<td></td>
<td>56% Quartz</td>
<td>None Detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-Fibrous</td>
<td></td>
<td>45% Non-fibrous (other)</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>TEXTURED CEILING & PLASTER 3 RM AT CEILING</td>
<td>Ten/White</td>
<td></td>
<td>30% Mica</td>
<td>None Detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-Fibrous</td>
<td></td>
<td>70% Non-fibrous (other)</td>
<td></td>
</tr>
<tr>
<td>15-Rough</td>
<td>TEXTURED CEILING & PLASTER 3 RM AT CEILING</td>
<td>Brown/Beige</td>
<td>2%</td>
<td>50% Quartz</td>
<td>None Detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fibrous</td>
<td></td>
<td>48% Non-fibrous (other)</td>
<td></td>
</tr>
</tbody>
</table>

Analyst(s) ____________________________
George Malone (20)

Joe Centifonti, Laboratory Manager
or other approved signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-trivial organic and mineral materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Reporting limit is 1%.

Samples analyzed by EMSL Analytical, Inc. Beltsville, MD NVLAP Lab Code 200253-0

Initial report from 05/15/2014 05:43:37

Test Report PLN-7.28.9 Printed: 5/15/2014 5:43:37 AM

THIS IS THE LAST PAGE OF THE REPORT

<table>
<thead>
<tr>
<th>Sample</th>
<th>Description</th>
<th>Appearance</th>
<th>Non-Asbestos</th>
<th>Asbestos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>% Fibrous</td>
<td>% Non-Fibrous</td>
</tr>
<tr>
<td>16</td>
<td>LOOSE</td>
<td>Brown/Cream/Rust</td>
<td>5% Glass</td>
<td>25% Ca Carbonate</td>
</tr>
<tr>
<td>191405595-0001</td>
<td>CARDBOARD PIPE INS BSMT ARB CORNER AT FL</td>
<td>Fibrous Homogeneous</td>
<td>25% Cellulose</td>
<td>0% Non-fibrous (other)</td>
</tr>
<tr>
<td>17</td>
<td>LOOSE</td>
<td>Brown/Gray/Cream</td>
<td>25% Cellulose</td>
<td>25% Ca Carbonate</td>
</tr>
<tr>
<td>191405595-0002</td>
<td>CARDBOARD PIPE INS AT GRAND AT RIGHT SMALL TUNNEL FACING WALL A</td>
<td>Fibrous Homogeneous</td>
<td>0% Non-fibrous (other)</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>WINDOW CAULK EXT WALL D WINDOW D3</td>
<td>Gray/White/Beige</td>
<td>15% Fibrous (other)</td>
<td>15% Quartz</td>
</tr>
<tr>
<td>191405595-0003</td>
<td></td>
<td>Fibrous Homogeneous</td>
<td>70% Non-fibrous (other)</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>GRAY VAPOR BARRIER 2ND LAYER LARGE SHED WALL A</td>
<td>Brown/White/Black</td>
<td>30% Cellulose</td>
<td>20% Non-fibrous (other)</td>
</tr>
<tr>
<td>191405595-0004</td>
<td></td>
<td>Fibrous Homogeneous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>YELLOW MASTIC DOTS BATHRM WALL BEHIND METAL WALL</td>
<td>Blue/Yellow</td>
<td>100% Non-fibrous (other)</td>
<td></td>
</tr>
<tr>
<td>191405595-0005</td>
<td></td>
<td>Non-Fibrous Homogeneous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>GRAY ROOFING SEALANT EXT WALL D</td>
<td>Gray/Tan</td>
<td>25% Synthetic</td>
<td>75% Non-fibrous (ultra)</td>
</tr>
<tr>
<td>191405595-0006</td>
<td></td>
<td>Fibrous Homogeneous</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analyst(s):

George Malone (6)

Joe Centofanti, Laboratory Manager
or approved signatory

EMSL Analytical, Inc.
1078 Baltimore Avenue, Beltsville, MD 20705
Phone/Fax: (301) 937-5700 / (301) 937-5701
http://www.emsl.com betsvilelab@emsl.com

EMLT Order: 191405595
CustomerID: ALW662
CustomerPO: ProjectID:

Attn: Larry Brand
Air, Land & Water Engineering Inc.
10017 Hackberry Lane
Suite 10
Columbia, MD 21046

Phone: (410) 997-0395
Fax: (410) 997-0278
Received: 06/18/14 2:45 PM
Analysis Date: 6/18/2014

Initial report from 00/19/2014 09:21:56
THIS IS THE LAST PAGE OF THE REPORT.
FIGURE 1

House

Air, Land and Water Engineering, Inc.
10017 Hackberry Lane
Suite 10
Columbia, MD 21046
410-997-0395

SUBJECT SITE:
21414 Georgia Ave
Brookesville, MD 20833
ALWE JOB NO. 14-3240
ASBESTOS, LEAD, and RADON SAMPLE LOCATION MAP
FIGURE 2
3 Sheds

SUBJECT SITE:
21414 Georgia Ave
Brookesville, MD 20833
ALWE JOB NO. 14-3240
ASBESTOS, LEAD, and RADON
SAMPLE LOCATION MAP

Air, Land and Water Engineering, Inc.
10017 Hackberry Lane
Suite 10
Columbia, MD 21046
410-997-0395

Electrical Shed

Storage Shed

Large Shed

ALWE Room #

Asbestos Sample # from 2014

Positive Asbestos Sample # from 2014

A, B, C, D Direction

c Closet w Window
APPENDIX C

LEAD BASED PAINT XRF RESULTS
XRF Data Sheet Interpretations

The following definitions will aid in interpreting the specific columns of information located in the XRF Lead-Based Paint Inspection Data sheets:

Column #1 - “Wall”: Each component tested is reported by a wall code of A, B, C, D, or N/A. A component is described with a wall code of “A” if it is located on the closest wall with the same orientation as the wall containing the front door of the property. Components are assigned a letter B, C, or D in a clockwise manner based on the location of wall A. The code “N/A” is assigned to ceiling or floors. When multiple components of the same type within a room, common area or exterior site are tested, testing shall proceed from left to right, when facing the component, with each unit assigned a number, such as 1, 2, 3, etc. (e.g. A1 window is the first window on the left side on the A wall. B2 window sill is the second window sill from the left on the B wall.) If only one item is present, no additional numbering is required.

Column #2 - “XRF Reading”: This is the XRF reading column given in units of milligrams per square centimeter (mg/cm²) and is recorded onto the data sheets directly from the XRF analyzer after each test. A negative number sometimes exists because of the nature of the algorithmic substrate correction features of the spectrum analyzer. This is not meant to be interpreted as a “negative” amount of lead, but rather an effect from the density of the substrate on the detectable amount of excited lead electron particles if any, can be associated with the components reading.

Column #3 - Classification of Readings

Each XRF test is classified as positive, negative, or inconclusive based on the following results according to the Performance Characteristic sheet for an RMD LPA-I using the “quick” mode and in accordance with the Maryland standard of >0.7 mg/cm². If no classification is shown then the result is negative.

For metal, brick, concrete, drywall, plaster, and wood substrates:

<table>
<thead>
<tr>
<th>Negative (N)</th>
<th>Positive (P)</th>
<th>Inconclusive (I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 0.7 mg/cm²</td>
<td>≥ 0.8 mg/cm²</td>
<td>0.8 mg/cm²</td>
</tr>
</tbody>
</table>

If a result of inconclusive is shown on the instrument, it will be recorded by the inspector as positive/inconclusive (P/I), or inconclusive/positive (I/P) to reflect the fact that 0.8 is considered a positive result in Maryland. If this is an isolated reading, the client may elect to have a paint chip laboratory analysis done since the laboratory analysis is more definitive. ALWE does not confirm these inconclusive readings unless approval is given to collect a paint chip sample for analysis. Additional fees are charged for the time to collect paint chip samples and for the laboratory analysis of these paint chip samples.

Column #4 – Paint Condition

I = Intact
F = Fair
P = Poor
XRF Lead-Based Paint Inspection Data Sheet – Interior Rooms

Address: 21414 Georgia Avenue
Client: ALC-NCFC
ALWE Project No.: 14-3240

<table>
<thead>
<tr>
<th>Door</th>
<th>1 - Side Entry/Kitchen</th>
<th>2 - Bath Room</th>
<th>3 - Room</th>
<th>4 - Room</th>
<th>5 - Living Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Door Jamb</td>
<td>A-0.1 N</td>
<td>B - 0.2 P</td>
<td>A 0.1 P</td>
<td>O - 0.1 N</td>
<td>B 0.2 N</td>
</tr>
<tr>
<td>Door Casing</td>
<td>A - 0.9 P</td>
<td>B 2.0 P</td>
<td>A 2.1 P</td>
<td>O 0.1 N</td>
<td>B 0.99 P</td>
</tr>
<tr>
<td>Door Frame</td>
<td>A - 0.4 N</td>
<td>B 0.8 P</td>
<td>A 0.1 P</td>
<td>O 0.2 N</td>
<td>B 0.99 P</td>
</tr>
<tr>
<td>Door threshold</td>
<td>A - 0.2 N</td>
<td>B 0.1 P</td>
<td>A 0.1 P</td>
<td>O 0.2 N</td>
<td>B 0.99 P</td>
</tr>
<tr>
<td>Window sash</td>
<td>A - 0.5 P</td>
<td>B 0.8 P</td>
<td>A 0.4 N</td>
<td>A - 0.2 N</td>
<td>B 0.9 P</td>
</tr>
<tr>
<td>Window sill</td>
<td>A - 0.1 P</td>
<td>B 0.1 P</td>
<td>A 0.2 N</td>
<td>A - 0.2 N</td>
<td>B 0.99 P</td>
</tr>
<tr>
<td>Window casing</td>
<td>A - 0.9 P</td>
<td>B 0.1 P</td>
<td>A 0.2 P</td>
<td>A - 0.2 N</td>
<td>B 0.99 P</td>
</tr>
<tr>
<td>Crown Molding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chair rail</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseboard</td>
<td>A 3.0 P</td>
<td>B - 0.1 N</td>
<td>- 0.2 N</td>
<td>A - 0.2 N</td>
<td></td>
</tr>
<tr>
<td>Floor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A wall</td>
<td>A - 0.1 N</td>
<td>B 0.3 P</td>
<td>A 0.1 N</td>
<td>A - 0.1 N</td>
<td></td>
</tr>
<tr>
<td>B wall</td>
<td>B 0.1 P</td>
<td></td>
<td>B 0.1 P</td>
<td>B 0.1 P</td>
<td></td>
</tr>
<tr>
<td>C wall</td>
<td>C - 0.3 N</td>
<td>B 0.1 P</td>
<td>C 0.1 P</td>
<td>C 0.1 P</td>
<td></td>
</tr>
<tr>
<td>D wall</td>
<td>D - 0.3 N</td>
<td>B 0.1 P</td>
<td>D 0.1 P</td>
<td>D 0.1 P</td>
<td></td>
</tr>
<tr>
<td>Ceiling</td>
<td>- 0.1 N</td>
<td></td>
<td>- 0.1 N</td>
<td>- 0.1 N</td>
<td></td>
</tr>
<tr>
<td>Closet door</td>
<td>B - 0.8 P</td>
<td>A 0.1 P</td>
<td>B 0.1 P</td>
<td>B 0.1 P</td>
<td></td>
</tr>
<tr>
<td>Closet door casing</td>
<td>B - 0.3 N</td>
<td>A 0.1 P</td>
<td>B 0.1 P</td>
<td>B 0.1 P</td>
<td></td>
</tr>
<tr>
<td>Closet shelf</td>
<td>B - 0.4 N</td>
<td>A 0.1 P</td>
<td>B 0.1 P</td>
<td>B 0.1 P</td>
<td></td>
</tr>
<tr>
<td>Shelf support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cabinet</td>
<td>A - 0.2 N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiator</td>
<td>A - 0.1 N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lintel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The columns of data within each room are organized as follows: 1st column = wall code; 2nd column = XRF reading; 3rd column = classification of reading; 4th column = paint condition (I = intact; F= fair; P= poor)

Date: 5/9/14
The columns of data within each room are organized as follows: 1st column = wall code; 2nd column = XRF reading; 3rd column = classification of reading; 4th column = paint condition (I = intact; F = fair; P = poor)
The columns of data within each room are organized as follows:
1st column = wall code; 2nd column = XRF reading;
3rd column = classification of reading; 4th column = paint condition (I = intact; F = fair; P = poor)
<table>
<thead>
<tr>
<th>Door</th>
<th>1 - Large D Room</th>
<th>2 - A/B Room</th>
<th>3 - B Room</th>
<th>4 - B/C Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Door Jamb</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Door Casing</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Door Transom</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Door threshold</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Window sash</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Window sill</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Window casing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crown Molding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chair rail</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseboard</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A wall</td>
<td>A - 0.7</td>
<td>A - 0.7</td>
<td>A - 0.3</td>
<td>A - 0.3</td>
</tr>
<tr>
<td>B wall</td>
<td>B - 0.3</td>
<td>B - 0.3</td>
<td>B - 0.1</td>
<td>B - 0.1</td>
</tr>
<tr>
<td>C wall</td>
<td>C - 0.1</td>
<td>C - 0.1</td>
<td>C - 0.2</td>
<td>C - 0.2</td>
</tr>
<tr>
<td>D wall</td>
<td>D - 0.3</td>
<td>D - 0.3</td>
<td>D - 0.1</td>
<td>D - 0.1</td>
</tr>
<tr>
<td>Ceiling</td>
<td>-0.3</td>
<td>-0.3</td>
<td>-0.1</td>
<td>-0.1</td>
</tr>
</tbody>
</table>

The columns of data within each room are organized as follows: 1st column = wall code; 2nd column = XRF reading; 3rd column = classification of reading; 4th column = paint condition (I = intact; F = fair; P = poor)
<table>
<thead>
<tr>
<th>Location</th>
<th>Code</th>
<th>XRF Reading</th>
<th>Classification</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows</td>
<td>N</td>
<td>0.1</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Window casing</td>
<td>N</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Column</td>
<td></td>
<td>0.4</td>
<td>N</td>
<td></td>
</tr>
</tbody>
</table>

The columns of data within each room are organized as follows: 1st column = wall code; 2nd column = XRF reading; 3rd column = classification of reading; 4th column = paint condition (I = intact; F= fair; P= poor)
APPENDIX D

RADON LABORATORY RESULTS
Site Radon Inspection Report

Mr. Larry Brand
AIR, LAND AND WATER ENGR., INC,
10017 Hackberry Lane
Suite 10
Columbia, MD 21046-

Client: Unknown
Test Location: 21414 Georgia Avenue

Individual Canister Results

Canister ID#: 2056378 Test Start: 08/27/2009 @ 15:45
Canister Type: Charcoal Canister 4 inch Test Stop: 09/03/2009 @ 11:00
Radon Level: 4.0 pCi/L Location: First Floor

Error for Measurement is: ± 0.3 pCi/L

Canister ID#: 2056387 Test Start: 08/27/2009 @ 15:45
Canister Type: Charcoal Canister 4 inch Test Stop: 09/03/2009 @ 11:00
Radon Level: 3.7 pCi/L Location: First Floor

Radon concentration has been estimated due to excessive moisture in test location. It is recommended that a retest be done when the humidity in the location is lower.

Average of Side by Side Canisters 3.9 pCi/L

Error for Measurement is: ± 0.4 pCi/L

The results indicate that at least one testing device registered at or above the United States Environmental Protection Agency (EPA) action level of 4.0 picoCuries per liter of air (pCi/L). The EPA recommends fixing your home if the average of two short-term tests taken in the lowest level of the home suitable for occupancy show radon levels that are equal to or greater than 4.0 pCi/L.

For information on how to reduce radon levels in your home, please review the EPA booklet: Consumer's Guide to Radon Reduction (EPA Document #402-K03-002, Revised February 2003) and contact your state health department. The EPA maintains a radon information website, including copies of its publications, at www.epa.gov/iaq/radon.

For New Jersey clients: Please see the attached guidance document entitled Radon Testing and Mitigation: The Basics for further information.

All procedures used for generating this report are in complete accordance with the current EPA protocols for the analysis of radon in air.

Andreas C. George
Radon Measurement Specialist
NJ MES 11089

Nancy Hernandez
Laboratory Director

2 Hayes Street, Elmsford, NY 10523
www.rtca.com
Site Radon Inspection Report

Mr. Larry Brand
AIR, LAND AND WATER ENGR., INC.,
10017 Hackberry Lane
Suite 10
Columbia, MD 21046-

Client: Alwe
Test Location: 2414 Georgia Avenue
Brookeville, MD 20833-

Individual Canister Results

<table>
<thead>
<tr>
<th>Canister ID#</th>
<th>Test Start</th>
<th>Test Stop</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016988</td>
<td>08/14/2009 @ 14:00</td>
<td>08/17/2009 @ 10:15</td>
<td>First Floor</td>
</tr>
<tr>
<td>Charcoal Canister 4 inch</td>
<td>Radon Level: 3.9 pCi/L</td>
<td>Error for Measurement: ± 0.3 pCi/L</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Canister ID#</th>
<th>Test Start</th>
<th>Test Stop</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017012</td>
<td>08/14/2009 @ 14:00</td>
<td>08/17/2009 @ 10:15</td>
<td>First Floor</td>
</tr>
<tr>
<td>Charcoal Canister 4 inch</td>
<td>Radon Level: 4.0 pCi/L</td>
<td>Error for Measurement: ± 0.3 pCi/L</td>
<td></td>
</tr>
</tbody>
</table>

Average of Side by Side Canisters: 4.0 pCi/L

The results indicate that at least one testing device registered at or above the United States Environmental Protection Agency (EPA) action level of 4.0 picocuries per liter of air (pCi/L). The EPA recommends fixing your home if the average of two short-term tests taken in the lowest level of the home suitable for occupancy show radon levels that are equal to or greater than 4.0 pCi/L.

For information on how to reduce radon levels in your home, please review the EPA booklet: Consumer's Guide to Radon Reduction (EPA Document #402-K-03-002, Revised February 2003) and contact your state health department. The EPA maintains a radon information website, including copies of its publications, at www.epa.gov/iaq/radon.

For New Jersey clients: Please see the attached guidance document entitled Radon Testing and Mitigation: The Basics for further information.

All procedures used for generating this report are in complete accordance with the current EPA protocols for the analysis of radon in air.

PLEDGE OF ASSURED QUALITY

RTCA and its personnel do not assume responsibility or liability, collectively and individually, for analysis results when detectors have been improperly handled or placed by the customer, nor does RTCA and its personnel accept responsibility for any financial or health consequences of subsequent action or lack of action, taken by the customer or its occupants based on RTCA-provided results.

Andreas C. George
Radon Measurement Specialist
NJ MED 10259

Nancy Hernandez
Laboratory Director

NRSB ARL 0001
NYS ELAP ID: 10806
PADEP ID: 0346
NJDEP ID: NY933
NJ MEB 90036
FL DOM RB1609

2 Hayes Street Plisnefort NY 10530
www.rtca.com
Site Radon Inspection Report

Derek Falzoi
AIR, LAND AND WATER ENGR., INC,
10017 Hackberry Lane
Suite 10
Columbia, MD 21046-

Client: M NCPCC
Test Location: 21414 Georgia Ave
Brookeville, MN 20833-

Individual Canister Results

<table>
<thead>
<tr>
<th>Canister ID#</th>
<th>2281490</th>
<th>Canister Type</th>
<th>Charcoal Canister 4 inch</th>
<th>Location</th>
<th>First Floor</th>
<th>Test Start: 06/18/2014 @ 10:30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radon Level</td>
<td>3.6 pCi/L</td>
<td>Error for Measurement is: ± 0.2 pCi/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Canister ID#</th>
<th>2281493</th>
<th>Canister Type</th>
<th>Charcoal Canister 4 inch</th>
<th>Location</th>
<th>First Floor</th>
<th>Test Start: 06/15/2014 @ 10:30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radon Level</td>
<td>3.6 pCi/L</td>
<td>Error for Measurement is: ± 0.2 pCi/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Average of Side by Side Canisters: 3.6 pCi/L

The reported results indicate that radon levels in the building tested are below the United States Environmental Protection Agency (EPA) action level of 4.0 picocuries per liter of air (pCi/L). The EPA recommends retesting if your living patterns change and you begin occupying a lower level of the building, such as a basement or if major remodeling is done.

General radon information may be obtained by consulting the EPA booklet: A Citizen’s Guide to Radon (www.epa.gov/radon/pubs/citguide.html). To request a copy or for further information, please contact your state health department. The EPA maintains a radon information website, including copies of its publications, at www.epa.gov/iaq/radon.

For New Jersey clients: Please see the attached guidance document entitled Radon Testing and Mitigation: The Basics for further information.

For New York clients: If the radon level of one or more testing devices is equal to or exceeds 20 pCi/L please contact the New York State Department of Health, Bureau of Environmental Radiation Protection, for technical advice and assistance at 518-402-7536 or toll free 1-800-458-1158.

PLEDGE OF ASSURED QUALITY

All procedures used for generating this report are in complete accordance with the current EPA protocols for the analysis of radon in air (EPA 402-R-02-004). The analytical results relate only to the samples tested, in the condition received by the lab, and that calculations were based upon the information supplied by client. RTCA and its personnel do not assume responsibility or liability, collectively and individually, for analysis results when detectors have been improperly handled or placed by the consumer, nor does RTCA and its personnel accept responsibility for any financial or health consequences of subsequent action or lack of action, taken by the customer or its consultants based on RTCA-provided results.

Andrews C. George
Radon Measurement Specialist
NJ MES 11089

Dante Galan
Lab Director

NRSB ARL0001
NYS ELAP ID: 10806
PADEP ID: 0346
NJDEP ID: NY933
NJ MEB 90036
FL DOH RB1639

2 Hayes Street, Elmsford, NY 10523
www.rtca.com
Greenwood Miller’s Cottage, environmental setting
https://montgomeryplanning.org/planning/historic/research-and-designation/gis-tool/
Non-contributing shed sits southwest of the dwelling; barn sits to the west, well-removed and buffered from the main dwelling
Greenwood Millers Cottage, aerial image and street view
(Workshop in identified in cloud)

https://www.google.com/maps/place/21414+Georgia+Ave,+Brookeville,+MD+20833/@39.2087376,-77.0638267,174m/data=!3m1!1e3!4m5!3m4!1s0x89b7d6fa5834f0bf:0xea4d997fce2244b218m213d39.2088814d-77.0631401
Photos: Shed
Photos: barn/workshop