Edgemoor 48, LLC (the "Applicant") is the developer of the property located at 4824 Edgemoor Lane, Bethesda, Maryland (the "Property"). The Property is located at the southwest quadrant of the intersection of Woodmont Avenue and Edgemoor Lane. It is a corner site, generally bordered by Woodmont Avenue to the east, Edgemoor Lane to the north, and a condominium development to the south and west. The Property is also located within 600 feet of the Bethesda Metro Station and bus terminal, and falls within the Bethesda Parking Lot District.

The Applicant proposes to redevelop the Property with a 12-story multifamily building consisting of up to 77 units (the "Project"). The Project represents an opportunity to bring a new environmentally sensitive condominium building with mid-size units and space saving automated parking within half a block of the Bethesda Metro Station. As explained in detail below, the proposed multifamily building is one of exceptional design and creativity. Pursuant to Section 59.4.7.3.E.2 of the Zoning Ordinance, as well as the exceptional design criteria outlined in the Montgomery County Commercial/Residential and Employment Zones Incentive Density Implementation Guidelines (the "Implementation Guidelines"), the Applicant is seeking 25 public benefit points for exceptional design.¹

The ensuing narrative provides the information required by the Bethesda Downtown Design Advisory Panel ("DAP") Submission Form.

A. Brief Project Description and Design Concept

Although located at a unique and highly visible location within the Arlington North District of Downtown Bethesda, the subject Property is underdeveloped with a single-family structure. Accordingly, the Applicant proposes to revitalize the Property with a modern residential landmark that will be on equal footing with other new projects in Downtown Bethesda in terms of architectural design, building quality, and visual appeal. Despite having a limited land area to work with (tract area = 8,659 square feet), the Applicant has been able to generate a creative solution that cleverly utilizes the site's configuration and blends seamlessly with the surrounding environment. Additionally, the proposed multifamily building will achieve the recommended maximum building height of 120 feet denoted in the 2017 Approved and Adopted Bethesda Downtown Sector Plan (the "Sector Plan").

As discussed in detail below, the design concept achieves several planning goals outlined in the Sector Plan, and implements many of the Bethesda Downtown Plan Design Guidelines.

¹ Under Section 4.9.2.C.4.f of the Zoning Ordinance, the Applicant can earn up to 30 public benefit points for exceptional design.
• **Architecture**

Following previous meetings with the Design Advisory Panel, as well as M-NCPPC Staff, the Edgemoor 48 Project has been redesigned and adjusted per feedback from both the DAP and staff. Staff indicated that of the three massing design options shown, any were acceptable to continue to the Preliminary Site Plan application. Based on feedback regarding the separation between the project to the south, the design has been updated in a manner that endeavors to address these concerns.

4824 Edgemoor Lane establishes a modern residential design at a unique corner site at the intersection of Woodmont Avenue and Edgemoor Lane in downtown Bethesda. The 12-story project is composed of a continuous wrapped façade that turns the corner of Edgemoor Lane and Woodmont Avenue, acting as a transition from the neighborhood to the urban core. The underdeveloped project site, with a net tract area of only 8,006 square feet, is highly visible along a curving Woodmont Avenue as approached from the north, as well as being visible from the neighborhood to the West and from the Metro to the East.

The irregular triangular shaped site creates the opportunity for the project to wrap around the corner, transitioning from the smaller scale to the higher scale, while the facades double height modulation breaks down the scale of the project. A vertically oriented tower element further modulates the Woodmont Avenue façade, turning the corner to the Southern façade as it pulls back from the Chase Condominium to the South. The southern façade now tapers away from a central point to create a more dynamic relationship with the project to the south, rather than two parallel walls. This move is done to be sympathetic to the Chase, as it has chamfered corners that soften the edges and diminish the perceived mass of the building. This not only provides more separation between the projects, but also allows for more visual relief and perceived separation. In addition, this provides for more light and air between the two projects, creating a much better relationship for occupants of both buildings, as well as from the public realm. The building is grounded by a continuous base that relates to the neighborhood scale and wraps around the entire building. The language of strong tower elements holding in place a curved wall is continuous around the building. Carefully composed ‘at risk windows’ enhance the elevations of the party wall along the western façade and reinforce the reading of the project as a four-sided building. This contemporary building design will soon become a quiet contributor to the existing urban condition along this picturesque thoroughfare.

• **Parking and Loading**

Given the Property's proximity to multiple forms of transit, including the Bethesda Metro Station and bus terminal (which is served by numerous bus line), and existing and planned bicycle facilities, the Applicant anticipates that a significant number of its residents will utilize transit for commuting purpose, but may still own a car. Accordingly, parking will be adequately sufficient to accommodate the residents. Given the limited size of the Property, the Project utilizes a parking elevator system to transport vehicles from the grade level of the parking garage to multiple below grade levels. The elevator system will have two cabs that can transport vehicles in either direction.
The Project will provide loading via a 14-foot wide access point at the southeastern portion of the site, along Woodmont Avenue. In addition to this dedicated loading zone, a temporary passenger loading zone is also provided for package delivery, rideshare pickup or dropoff, and miscellaneous short term deliveries. Access to this space is conveniently located just 35 feet from the lobby via an internal hallway. The loading was specifically located along Woodmont, in response to the concerns of the Chase residents that loading on Edgemoor Avenue would potentially conflict with vehicles entering or exiting the Chase parking garage. Finally, the Applicant is working with MNCPPC and DOT to establish a dedicated loading zone on the north side of Edgemoor Lane mid-block between Woodmont Avenue and Arlington Road for short term deliveries. This delivery/loading zone will be utilized by the surrounding multi-family buildings and will provide a benefit not only to the Project, but to the surrounding community.

- **Pedestrian Circulation and Streetscape Improvements**

 Given the limited tract size, the Zoning Ordinance does not require the Project to provide any public use space. However, an important aspect of the Project is that it will provide improvements to the pedestrian realm. The design will create a continuous building line along Edgemoor Lane and Woodmont Avenue, which will further activate the pedestrian environment. The Applicant intends to dedicate approximately 306 square feet of land area along the Edgemoor Lane frontage to help enhance the walkability of the site.

 The Project includes streetscape improvements along the Property's Edgemoor Lane and Woodmont Avenue frontage, in accordance with the Bethesda Streetscape Standards. These improvements will bookend the Edgemont II project to the north (already under construction). The proposed streetscape improvements, framed by a new, multi-family residential building with interesting architecture, will ultimately contribute to the creation of a cohesive pedestrian system through Bethesda, particularly within the Arlington North District.

B. Exceptional Design Public Benefit Points Requested and Brief Justification

With respect to Exceptional Design, the Project merits 15 public benefit points, as it meets all six (6) of the applicable criteria, as outlined in the Implementation Guidelines:

- **Providing innovative solutions in response to the immediate context.**

 Generally, the Project's design evidences a keen understanding of the site’s immediate context, opportunities, and constraints. The building design fills a development void in Woodmont Avenue's urban streetwall that is compatible with the established scale of the adjacent buildings and addresses the "missing tooth" condition created by the existing single-family structure. Consistent with the Sector Plan, the building's height of 120 feet appropriately steps down from the taller heights to both the north and west, and provides the appropriate transition to the lower heights further to the west of the Property.

 Woodmont Avenue is a frequently traversed one-way artery. Additionally, Woodmont Avenue's curve lends the multifamily building to a dynamic, gradual reveal to motorists and
pedestrians traveling southbound. Hints of the building's tripartite arrangement will precipitate a dramatic reveal of the signature vertical glass bay, fin, and entry element, just as the view opens at the Woodmont Avenue and Edgemoor lane intersection.

The building is also uniquely designed to ensure that secondary facades on property lines, such as those on the south and west that are in direct view of adjacent residents, are thoughtfully and aesthetically composed to create positive viewing experiences. The revised tapered southern façade with its chamfered corners not only further mitigates the impact of the Project on the Chase condominium building to the south, it also creates visual interest. An innovative measure proposed is the proposed automated parking system that reserves the space needed to provide a superior residential experience.

Furthermore, the Project enhances the public streetscape by providing new sidewalks, new street trees, and a bike lane with a median strip to slow down traffic. These are essential improvements given the immediate context and daily activity along Woodmont Avenue.

- Creating a sense of place and serves as a landmark.

The design concept includes various elements to create a sense of place and establish a landmark development. The Project will provide and maintain an aligned street edge along Woodmont Avenue and Edgemoor Lane. The design incorporates a human-scale lobby and amenity spaces, which will activate this street edge and establish an urban sense of place that the existing single-family structure cannot achieve. The building's ground floor spaces will be recessed behind planters aligned with the building facades. The loading and garage access points will be screened with opaque rolling grills to block any views of internal activity.

The composition of the building responds directly to the site, as Woodmont Avenue curves around the project, so too does the façade. The project is grounded by tower elements on the elevations, holding a curved façade that turns the corner from Edgemoor Lane to Woodmont Avenue. The subtle architectural move allows the project to fit in appropriately with the context and provide the opportunity for incorporating additional building signage to stand out, which could enhance pedestrian wayfinding along the street.

Familiar, well-composed residential materials and building elements at grade-level will also function to create a sense of place. The use of familiar residential elements, such as the modulation of the façade to articulate units, as well as the use of balconies and roof terraces will enhance the projects sense of place and help to establish a landmark development in this area of downtown Bethesda.

- Enhancing the public realm in a distinct and original manner.

The Project enhances the public realm in a distinct and original manner. The building's base, which reinforces the Woodmont Avenue street edge, incorporates elements to enhance the pedestrian experience. A composition of masonry materials and glass creates a visual connection between the lobby level and the street, thus establishing a harmony with a projecting canopy to
provide a welcoming, hospitable environment along the sidewalk. Additionally, ± 5-foot-wide planters along the base – positioned between projecting columns in the above façade plane – add to the visual experience for pedestrians along Woodmont Avenue and Edgemoor Lane and provide additional greenery on a constrained site.

- **Introducing materials, forms or building methods unique to the immediate vicinity or applied in a unique way.**

The Project utilizes various architectural features to accommodate the site’s unique and irregular configuration. The building’s design concept resembles a fan-shaped, three-dimensional structure that opens up to the southwest corner of Woodmont Avenue and Edgemoor Lane. The geometry of the site is responded to through the use of a curved façade turning the corner around Woodmont Avenue and Edgemoor Lane. This massing is modulated by varied double height readings to break down the reading of the massing. These façade elements also reinforce the cellular nature of a multifamily building and create identifiable multi-story individual (unit) faces, which break down the building's scale in a sculpturally artistic way.

- **Designing compact, infill development so living, working and shopping environments are more pleasurable and desirable on a site.**

The Project's design maximizes the development potential of a constrained site that is in close proximity to a variety of living, working, and shopping opportunities. Prospective residents will be drawn to the proposed landmark development at this highly convenient location along Woodmont Avenue. The site is within 600 feet of the Bethesda Metro Station and within a short walking distance of Bethesda Row – the current retail center of Downtown Bethesda. The Project helps to stimulate pedestrian activity along Woodmont Avenue and Edgemoor Lane. Additionally, by orienting living rooms towards street views, new residents will be able to put "eyes on the street", which increases public connectivity, area safety, and ultimately creates a more pleasurable environment.

Furthermore, the project utilizes a compact, space-saving automatic parking system. This allows for a more spacious, enjoyable lobby environment that will be transparent to the public domain and create a more desirable living experience for prospective residents.

- **Integrating low-impact development methods into the overall design of the site and building, beyond green building or site requirements.**

The Project will integrate a variety of low-impact development methods into the overall design of the multifamily building that go beyond green building or site requirements. The automated parking system will reduce vehicle emissions, lower excavation costs, and mitigate any adverse impacts on the surrounding environment. The multifamily building will also consist of green roofs and screened HVAC units on the penthouse roof and provide opportunities for enhanced recycling efforts. Overall, the Project is a low-impact, environmentally sensitive development, especially given the physical constraints of the site.
4824 Edgemoor Lane
Bethesda Downtown Design Advisory Panel
Narrative for Exceptional Design Public Benefit Points Justification
PROJECT DESCRIPTION:

The 4824 Edgemoor Lane project, located in Downtown Bethesda, consists of a new 12-story concrete framed building with 77 residential units. Located on the ground floor will be a leasing office, lobby and mail/package rooms. Floors 2-12, 7,400 SF each, will contain a mix of (1) one and (2) two bedroom units, with 7 per floor. The cellar levels will contain an automated parking garage with 77 spaces, bike and tenant storage and building utility rooms. The roof will consist of a green roof area, outdoor roof deck and penthouse containing tenant amenity areas. The screened penthouse roof will house required mechanical and electrical equipment. The building will be fully sprinklered. The exterior building envelope will be comprised of glass, cementitious and metal woodgrain panels, stucco and vegetative walls. Aluminum canopies, fins and trellises will be implemented to accent the building facades.

UNIT CALCULATIONS BASED ON DIMENSIONED PLANS (EDGEMOOR LANE & 4824)

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>BDR TYPE</th>
<th>NET RENTAL</th>
<th>SERVICE/REC</th>
<th>EASTERN WALL</th>
<th>SOUTHEN WALL</th>
<th>BED</th>
<th>TOTAL</th>
<th>UNITS</th>
<th>EFAC</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PENTHOUSE</td>
<td>1 BED</td>
<td>550</td>
<td>350</td>
<td>250</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>100.00%</td>
<td></td>
</tr>
<tr>
<td>11TH FLOOR</td>
<td>1 BED</td>
<td>500</td>
<td>300</td>
<td>200</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>100.00%</td>
<td></td>
</tr>
<tr>
<td>10TH FLOOR</td>
<td>2 BED</td>
<td>500</td>
<td>300</td>
<td>200</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>100.00%</td>
<td></td>
</tr>
<tr>
<td>9TH FLOOR</td>
<td>2 BED</td>
<td>500</td>
<td>300</td>
<td>200</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>100.00%</td>
<td></td>
</tr>
<tr>
<td>8TH FLOOR</td>
<td>2 BED</td>
<td>500</td>
<td>300</td>
<td>200</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>100.00%</td>
<td></td>
</tr>
<tr>
<td>7TH FLOOR</td>
<td>2 BED</td>
<td>500</td>
<td>300</td>
<td>200</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>100.00%</td>
<td></td>
</tr>
<tr>
<td>6TH FLOOR</td>
<td>2 BED</td>
<td>500</td>
<td>300</td>
<td>200</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>100.00%</td>
<td></td>
</tr>
<tr>
<td>5TH FLOOR</td>
<td>2 BED</td>
<td>500</td>
<td>300</td>
<td>200</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>100.00%</td>
<td></td>
</tr>
<tr>
<td>4TH FLOOR</td>
<td>2 BED</td>
<td>500</td>
<td>300</td>
<td>200</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>100.00%</td>
<td></td>
</tr>
<tr>
<td>3RD FLOOR</td>
<td>2 BED</td>
<td>500</td>
<td>300</td>
<td>200</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>100.00%</td>
<td></td>
</tr>
<tr>
<td>2ND FLOOR</td>
<td>2 BED</td>
<td>500</td>
<td>300</td>
<td>200</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>100.00%</td>
<td></td>
</tr>
<tr>
<td>1ST FLOOR</td>
<td>2 BED</td>
<td>500</td>
<td>300</td>
<td>200</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>100.00%</td>
<td></td>
</tr>
<tr>
<td>BASEMENT</td>
<td>77 SPACES</td>
<td>1,800</td>
<td>1,800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>75.00%</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>19,250</td>
<td>3,500</td>
<td>3,500</td>
<td>2,500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: SQUARE FOOTAGES ARE APPROXIMATE AND SUBJECT TO FINAL DETERMINATION.
+/- 62 parking spaces total

AUTOMATED PARKING, P2 GARAGE
~12 parking spaces total

© 2020 - Bonstra | Haresign Architects
Acumen Companies

PRECEDE NTS

© 2020 - Bonstra | Haresign Architects
2.1.3 Downtown Mixed-Use Street

Downtown Mixed-Use Streets typically accommodate high levels of pedestrian activity with frequent parking turnover, as well as loading and service access needs for local businesses and multi-unit residential buildings. These streets are predominantly lined by mid- to high-rise buildings with a mix of commercial and residential uses. Examples of Downtown Mixed-Use Streets include Woodmont Avenue and most streets in the Downtown Bethesda core and Woodmont Triangle District.

WOODMONT AVENUE

Intent: Building and sidewalk designs along Downtown Mixed-Use Streets should create a vibrant environment that accommodates the diverse needs of businesses, residents and visitors. Sidewalks should balance ease of walkability for continuous pedestrian flow with space for outdoor uses.

Table 2.02: Downtown Mixed-Use Street

<table>
<thead>
<tr>
<th>Sidewalk Zones</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Planting/Furnishing Zone: 5 - 8 ft.</td>
</tr>
<tr>
<td>B. Pedestrian Through Zone: 8 - 12 ft.</td>
</tr>
<tr>
<td>C. Frontage Zone*: 0 - 7 ft.</td>
</tr>
</tbody>
</table>

Building Placement

D. Build-to Line: 15 - 20 ft. from street curb

Building Form

E. Base Height: 3-6 stories (35-70 ft.)
F. Step-back: 10-15 ft. **

Alternative Treatments

** On this street type, buildings under 120 ft. may consider alternative methods to reduce tower bulk other than step-backs. These are outlined in Section 2.4.8 Town: "Menu" of Methods to Reduce Bulk.

NON-COMPLIANT WITH STEP BACK, SEEKING ALTERNATIVE TREATMENT

SEE SHEET 0610

* The Frontage Zone can be minimized or eliminated to provide a wider Pedestrian Through Zone in areas with heavy foot traffic.
2.1.7 Neighborhood Local Street

Neighborhood Local Streets are typically narrow side streets that accommodate shared bike uses, access to residential parking, on-street parking and low traffic volumes with very slow auto speeds. Sidewalks along these streets are often narrower than on other types because of the constrained street width.

Intent: Building and sidewalk designs along Neighborhood Local Streets should provide efficient and comfortable access from the urban core to neighborhoods of low-scale buildings and detached homes. Because local streets provide a transition from the downtown core to surrounding neighborhood streets, the height of building frontages should reflect this change in scale.

Table 2.06: Neighborhood Local Street

<table>
<thead>
<tr>
<th>Sidewalk Zones</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Planting/Furnishing Zone: 5 - 8 ft.</td>
</tr>
<tr>
<td>B. Pedestrian Through Zone: 6 - 10 ft.</td>
</tr>
<tr>
<td>C. Frontage Zone: 0 - 4 ft.</td>
</tr>
<tr>
<td>D. Build-to Line: 12 - 15 ft. from street curb</td>
</tr>
</tbody>
</table>

Building Form

- E. Base Height: 2 - 4 stories (25 - 50 ft.)*
- F. Step-back: 15 - 20 ft.*

* Properties on a Neighborhood Local Street confronting a Residential Detached or Residential Townhouse zone should adhere to the Montgomery County Code Chapter 59 Section 4.1.8 Compatibility Requirements for base height and upper floor step-backs.

NON-COMPLIANT WITH STEP BACK, SEEKING ALTERNATIVE TREATMENT

SEE SHEET 0610
2.4.2 Base: Building Placement

Intent: To create a continuous street wall to frame the sidewalk and create a more comfortable outdoor room for pedestrians to encourage walking throughout the downtown.

Guidelines:

A. Place the facade of the building base along the recommended build-to-line to create a continuous street edge.

B. Buildings taller than 200 feet that do not step back the upper floors should have a build-to-line of at least 20-30 feet.

C. Where existing building lines for adjacent properties are set back more than the recommended build-to-line, buildings may be placed to align with this existing building line as long as it is within 5 feet of the recommended build-to-line.

D. Exceptions to the building placement guidelines include through-block connections and open spaces recommended in the sector plan, entrances and articulation for architectural interest.
2.4.3 Base: Street Activation

Intent: To encourage pedestrian activity by providing ground-floor and base design elements that engage with the sidewalk environment.

Guidelines:

A. Provide frequent entries, transparency and operable walls where possible to encourage visual and physical connections between the ground floor and the public sidewalk. Avoid long blank walls along the sidewalk.

B. Orient private balconies and terraces toward the street to encourage an interface between the private and public realms and to create "eyes on the street." Balconies creating "eyes on the street"

C. Include elements such as textured materials, awnings, plantings, signage and seating to create a visually engaging and inviting building edge to frame the sidewalk and create stopping points to relax, gather and socialize.

D. Place particular focus on active ground floor design along the portions of streets identified as the recommended retail nodes in the Retail Planning Strategy for the Downtown Bethesda Plan.
2.4.4 Base: Variation and Articulation

Intent: To ensure that facades are not exceedingly long, uninterrupted and rigidly uniform. These variations break up the mass of large buildings, add visual interest and promote human-scaled lower stories to relate to pedestrians.

Guidelines:
A. Vary base height up to the maximum height designated by the street type. This variation should respond to the street character and typical widths, heights and modulation of existing buildings to create a contextually sensitive building wall along the street.
B. Provide plane changes in the facade that create significant vertical and horizontal breaks, and shadow lines on the facade.
C. Consider variation in building materials or color to add texture to lower floors most visible to those at pedestrian level.
D. Avoid cantilevering the majority of the building mass over the Frontage Zone, public sidewalk or public open space to prevent interfering with street trees and blocking access to sunlight and sky views for pedestrians.
2.4.6 Tower: Separation Distance

Intent: To allow access to light and air, limit the impact of shadows on the public realm and reduce the extent of large blank walls as new buildings develop at or near the property line.

Guidelines:

A. Separate tower floors at least 45 to 60 feet (12.5 to 30 feet from the side and rear property lines).

B. Provide a continuous building base along the tower floors.

C. Avoid building towers to the property line creating expansive blank party walls that are imposing on the pedestrian environment.

Alternative Treatments:

Buildings below 120 feet or with limited property size/width/depth may reduce tower separation or consider party walls. If party walls are necessary, mitigate their visual impact with elements such as public art, lighting, texture and/or patterning that provide visual interest and are appropriate to the context and architecture of the building.

Where existing neighboring building towers are built to or close to the property line, new development should aim to achieve the total tower separation where possible. However, at a minimum, the new building tower levels should provide the separation distance indicated in Guideline 2.4.6 A from the side and rear property lines, except where building to the lot line could better address an existing blank wall condition.

Varied geometry in a building’s upper floors, and facade modulation between buildings can also be used as methods to increase the perception of tower separation and allow access to light and air.
2.4.6 Tower: Separation Distance

Intent: To allow access to light and air, limit the impact of shadows on the public realm and reduce the extent of large blank walls as new buildings develop at or near the property line.

Guidelines:

A. Separate tower floors at least 45 to 60 feet (22.5 to 30 feet from the side and rear property lines).
B. Provide a continuous building base along the tower floors.
C. Avoid building towers to the property line creating expansive blank party walls that are imposing on the pedestrian environment.

Alternative Treatments:

Buildings below 120 feet or with limited property size/width/depth may reduce tower separation or consider party walls. If party walls are necessary, mitigate their visual impact with elements such as public art, lighting, texture and/or patterning that provide visual interest and are appropriate to the context and architecture of the building.

Where existing neighboring building towers are built to or close to the property line, new development should aim to achieve the total tower separation where possible. However, at a minimum, the new building tower levels should provide the separation distance indicated in Guideline 2.4.6.A from the side and rear property lines, except where building to the lot line could better address an existing blank wall condition.

Varied geometry in a building’s upper floors, and facade modulation between buildings can also be used as methods to increase the perception of tower separation and allow access to light and air.

AVERAGE SEPARATION DISTANCE: 35.05'
2.4.6 Tower: Separation Distance

Intent: To allow access to light and air, limit the impact of shadows on the public realm and reduce the extent of large blank walls as new buildings develop at or near the property line.

Guidelines:
A. Separate tower floors at least 45 to 60 feet (22.5 to 30 feet from the side and rear property lines).
B. Provide a continuous building base along the tower floors.
C. Avoid building towers to the property line creating expansive blank party walls that are imposing on the pedestrian environment.

Alternative Treatments:
Buildings below 120 feet or with limited property size/width/depth may reduce tower separation or consider party walls. If party walls are necessary, mitigate their visual impact with elements such as public art, lighting, texture and/or patterning that provide visual interest and are appropriate to the context and architecture of the building.

Where existing neighboring building towers are built to or close to the property line, new development should aim to achieve the total tower separation where possible. However, at a minimum, the new building tower levels should provide the separation distance indicated in Guideline 2.4.6A from the side and rear property lines, except where building to the lot line could better address an existing blank wall condition.

Varied geometry in a building’s upper floors, and facade modulation between buildings can also be used as methods to increase the perception of tower separation and allow access to light and air.

Angled massing eliminates direct relationship between buildings and minimizes visual relationship between two buildings.
2.4.7 Tower: Step-Back

Intent: To provide a human-scaled building edge along the street that enhances pedestrian comfort and access to sky views. In districts with mostly low to mid-rise buildings, the step-back enables new tall buildings to better relate to existing context and maintain a similar street character.

Guidelines:
A. Retain a tower step-back across the majority of the building frontage. The building’s full height may be expressed to the ground on important corners, to mark primary entryways or to balance the massing composition with vertical elements.
B. Encourage undulating, curved or angled tower step-backs if the average step-back meets the guidelines for the street type. This expressive geometry can increase visual interest on prominent sites near major open spaces and corners.
C. Allow balconies to encroach in the step-back if they do not significantly add to the perceived bulk and mass of the building’s upper floors.

Alternative Treatments:
Though step-backs are one of the preferred methods to reduce tower bulk, especially on small neighborhood street types, alternative methods are outlined in Section 2.4.8 Tower: "Menu" of Methods to Reduce Bulk. These alternative methods particularly apply to buildings tower than 100-120 feet as noted in Section 2.4.2 Street Types, or to sites with limited size or property depth from the street.

In cases, where a step-back is not provided, another method to relate to the context of adjacent building heights and base conditions is with a change of materials or clear regulating lines.

NON-COMPLIANT, SEEKING ALTERNATIVE TREATMENT
2.4.7 Tower: Step-Back

Intent: To provide a human-scaled building edge along the street that enhances pedestrian comfort and access to sky views. In districts with mostly low to mid-rise buildings, the step-back enables new tall buildings to better relate to existing context and maintain a similar street character.

Guidelines:

A. Retain a tower step-back across the majority of the building frontage. The building’s full height may be expressed to the ground on important corners, to mark primary entryways or to balance the massing composition with vertical elements.

B. Encourage undulating, curved or angled tower step-backs if the average step-back meets the guidelines for the street type. This expressive geometry can increase visual interest on prominent sites near major open spaces and corners.

C. Allow balconies to encroach in the step-back if they do not significantly add to the perceived bulk and mass of the building’s upper floors.

Alternative Treatments:

Though step-backs are one of the preferred methods to reduce tower bulk, especially on small neighborhood street types, alternative methods are outlined in Section 2.4.8 Tower: "Menu" of Methods to Reduce Bulk. These alternative methods particularly apply to buildings taller than 90-120 feet as noted in Section 2.1 Street Types, for sites with limited size or property depth from the street.

In cases where a step-back is not provided, another method to relate to the context of adjacent building heights and base conditions is with a change of materials or clear regulating lines.

NON-COMPLIANT, SEEKING ALTERNATIVE TREATMENT
2.4.8 Tower: "Methods" of Methods to Reduce Bulk

Intent: Downtown Bethesda is an important corridor in Montgomery County for increased building heights to accommodate future growth. However, colossal heights and larger footprints can be an imposing pressure on the public realm by casting large shadows, limiting the views and creating an unattractive scale for pedestrians.

A. Limit Tower Floor Plate

Limiting the tower floor plate size and height is critical to reduce the pressure on the public realm and pedestrian areas. Smaller footprints and moderate heights are important to improve the quality of the building's urban environment.

B. Use Unique Geometry

Unique geometric shapes such as setbacks and drafts reduce the visual impact of the building's profile. Angled or curved facades allow a building to blend more naturally into its surroundings. They can enhance privacy between units and create varied and interesting views from nearby windows.

C. Vary Tower Height

Whether creating a single tower or multiple towers or an A-shaped development between existing towers, varying the height can create the appearance of several large structures instead of one large building.

There are several ways to reduce the visual bulk of a building's upper floors or to creatively reduce the perceived bulk of a building. Different design techniques can be used to control the building's massing and reduce the visual scale. These techniques can be used individually or in combination for the best visual results. However, several should be used in combination to best match the guidelines intent.

1. Modulate and Articulate Facades

The facade's visual impact can be reduced by breaking up large facades into smaller sections. Limiting large continuous sections of windows and reducing their number can break up the facade and create visual interest. Adding intricate details can also add depth to the facade.

2. Vary Tower Height and Orientation

Similar to variation in tower height, variation in tower placement and orientation can increase perceived separation between towers, reducing the visual massing of several adjacent towers. This can add visual interest to the overall scene in different directions.

3. Limit Apparent Face

The apparent face is the length of the facade plane that is visible to the viewer from its front. Limiting the length of the apparent face reduces the visual massing and can be achieved through setbacks or varying heights along the facade.