EXPEDITED
MONTGOMERY COUNTY HISTORIC PRESERVATION COMMISSION
STAFF REPORT

Address: 18608 Bransford Place, Olney
Meeting Date: 5/21/2019

Resource: Master Plan Site #23/148
Report Date: 5/14/2019
(Chichester House)

Applicant: Frank Colleli and Kristin Mullenholz
Public Notice: 5/7/2019
(Zach Neubauer, Agent)

Review: HAWP
Tax Credit: N/A

Case Number: 22/13-19A
Staff: Michael Kyne

PROPOSAL: Solar panel installation

STAFF RECOMMENDATION:
☑ Approve
☐ Approve with conditions

ARCHITECTURAL DESCRIPTION

SIGNIFICANCE: Master Plan Site #22/13, Chichester House

STYLE: Romantic Revival (Chichester House)

DATE: c. 1890s (Chichester House); 2009 (Subject Property House)

Fig. 1: Subject property and proposed solar panel plan.
PROPOSAL:

The historic resource (Chichester House) was destroyed by fire in 1999. The subject property house was constructed within the environmental setting in 2009. The applicants propose to install flush-mounted solar panels on the roof of the c. 2009 subject property house.

APPLICABLE GUIDELINES:

Policy On Use of Expedited Staff Reports for Simple HAWP Cases

IV. The Expedited Staff Report format may be used on the following type of cases:

2. Modifications to a property, which do not significantly alter its visual character.

Montgomery County Code; Chapter 24A-8

(b) The commission shall instruct the director to issue a permit, or issue a permit subject to such conditions as are found to be necessary to insure conformity with the purposes and requirements of this chapter, if it finds that:

1. The proposal will not substantially alter the exterior features of an historic site or historic resource within an historic district; or
2. The proposal is compatible in character and nature with the historical, archeological, architectural or cultural features of the historic site or the historic district in which an historic resource is located and would not be detrimental thereto or to the achievement of the purposes of this chapter; or
3. The proposal would enhance or aid in the protection, preservation and public or private utilization of the historic site or historic resource located within an historic district in a manner compatible with the historical, archeological, architectural or cultural value of the historic site or historic district in which an historic resource is located; or
4. The proposal is necessary in order that unsafe conditions or health hazards be remedied; or
5. The proposal is necessary in order that the owner of the subject property not be deprived of reasonable use of the property or suffer undue hardship; or
6. In balancing the interests of the public in preserving the historic site or historic resource located within an historic district, with the interests of the public from the use and benefit of the alternative proposal, the general public welfare is better served by granting the permit.

(c) It is not the intent of this chapter to limit new construction, alteration or repairs to any 1 period or architectural style.

Secretary of Interior’s Standards for Rehabilitation

The Secretary of the Interior defines rehabilitation as “the act or process of making possible a compatible use for a property through repair, alterations, and additions while preserving those portions or features, which convey its historical, cultural, or architectural values.” The Standards are as follows:

2. The historic character of a property shall be retained and preserved. The removal of historic materials or alteration of features and spaces that characterize a property shall be avoided.
STAFF RECOMMENDATION:

Staff recommends that the Commission approve the HAWP application under the Criteria for Issuance in Chapter 24A-8(b), (1) & (2) having found that the proposal will not substantially alter the exterior features of the historic resource and is compatible in character with the purposes of Chapter 24A;

and with the Secretary of the Interior’s Standards for Rehabilitation #2;

and with the general condition that the applicant shall present the 3 permit sets of drawings, if applicable, to Historic Preservation Commission (HPC) staff for review and stamping prior to submission for the Montgomery County Department of Permitting Services (DPS) building permits;

and with the general condition that the applicant shall notify the Historic Preservation Staff if they propose to make any alterations to the approved plans;

and with the general condition that final project design details, not specifically delineated by the Commission, shall be approved by HPC staff or brought back to the Commission as a revised HAWP application at staff’s discretion.

Once the work is completed the applicant will contact the staff person assigned to this application at 301-563-3400 or michael.kyne@montgomeryplanning.org to schedule a follow-up site visit.
APPLICATION FOR
HISTORIC AREA WORK PERMIT

Contact Name: Zach Neubauer
Contact Email: Zneubauer@SolarEnergyWorld.com
Contact Phone: 410-579-5172

Tax Account No.: 08-03613707

Name of Property Owner: Frank Collesi & Kristin Mullerholz
Property Phone No.: 301-520-2902

Address: 18608 Bransford Place - Olney, MD 20832

Contractor: Solar Energy World, LLC.
Contractor Phone No.: 410-579-2099

Contractor Registration No.: 03-0281821

Agent for Owner: John Stokes
Agent Phone No.: 410-579-2082

LOCATION OF WORK PERMIT

House Number: 18608
Street: Bransford Place

Town/City: Olney
Nearest Cross Street: Fair Hill Road

Lot: 48
Subdivision: The Reserve at Fair Hill - 0080

PART ONE: TYPE OF PERMIT/ACTIVITIES TO BE PERFORMED

1A. CHECK ALL APPLICABLE:

☐ Construct ☐ Extend ☐ Alter/Renovate ☐ Add On ☐ Wall ☐ Deck ☐ Shed

☐ Move ☐ Install ☐ Wood/Reza ☐ Solar ☐ Fireplaces ☐ Woodburning Stove ☐ Single Family

☐ Repairs ☐ Repair ☐ Removable ☐ Fence/Wall (compliance Section 4) ☐ Other:

1B. Construction cost estimate: $29,000

1C. If this is a revision of a previously approved work permit, see Permit #:

PART TWO: COMPLETE FOR NEW CONSTRUCTION AND EXTERNAL ADDITIONS

2A. Type of sewer disposal: ☐ 01下 DISS ☐ 02 Septic ☐ 03 Other:

2B. Type of water supply: ☐ 01下 DISS ☐ 02 Well ☐ 03 Other:

PART THREE: COMPLETE ONLY FOR FENCING/RETAINING WALL

3A. Height: ______ feet ______ inches

3B. Indicate whether the fence or retaining wall is to be constructed on one of the following locations:

☐ On party line/property line ☐ Entirely on land of owner ☐ On public right of way/assessment

I hereby certify that I have the authority to make the foregoing application, that the application is correct, and that the construction will comply with plans and specifications required by the Historic Preservation Commission and I hereby acknowledge and accept this to be a condition for the issuance of this permit.

Signature of owner or authorized agent:
Date: 4-30-19

Approved:
For Chairperson, Historic Preservation Commission

Disapproved:
Signature:
Date:

Application/Permit No.:
Date Filed:
Date Issued:

SEE REVERSE SIDE FOR INSTRUCTIONS
Historic Area Work Permit Application for a Solar Electric System
on the home of
Frank Colleli & Kristen Mullenholz, 18608 Bransford Pl., Olney, MD 20832

1. Written description of the project
 a. The existing structure is a Colonial style, two-story, single family home. It was constructed in 2009.
 b. The proposed solar system will be flush-mounted to portions of the front (southwest and southeast-facing), and back (north-facing) roofs on the primary sections of the home. The majority of the solar panels will be on the south facing roofs of the building. The height and tilt of the roof will pose little disruption to the environment of the neighborhood, as it will be virtually unnoticeable from the street level. Conduit can be run from the roof to ground by tucking it behind a downspout on the side of the home, then running it along the underside of protruding brick to the equipment. We have had issues with painting conduit in the past, as it is galvanized and does not accept paint well. As a result, we typically either bring the conduit to the basement inside the home, when possible, or physically hide the conduit as best as we can.

2. Site Plan
 a. Please see attached Solar Panel Layout
 b. 2 copies, 11"x17"

3. Plans & Elevations
 a. N/A

4. Materials Specifications
 a. Please see attached spec sheets for module and inverter

5. Photographs
 a. Please see photos below

6. Tree Survey – no trees will be disturbed or removed as part of this work

April 23, 2019
7. Addresses of Adjacent and Confronting Property Owners

<table>
<thead>
<tr>
<th>Owner's mailing address</th>
<th>Owner's agent mailing address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frank Colleli & Kristen Mullenholz</td>
<td>Solar Energy World</td>
</tr>
<tr>
<td>18608 Bransford Place</td>
<td>5681 Main St.</td>
</tr>
<tr>
<td>Olney, MD 20832</td>
<td>Elkridge, MD 21075</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adjacent and confronting property owners mailing addresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot 49, Block B</td>
</tr>
<tr>
<td>Adjacent</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lot 47, Block B</td>
</tr>
<tr>
<td>Adjacent</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lot 50, Block B</td>
</tr>
<tr>
<td>Confronting</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lot 51, Block B</td>
</tr>
<tr>
<td>Confronting</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Existing Property Condition Photographs

Front view

East view

West view
Historic Area Work Permit Application for a Solar Electric System
on the home of
Frank Collell & Kristen Mullenhof, 18608 Bransford Pl., Olney, MD 20832

Equipment Location, Before and After Installation

Proposed Conduit Locations
LR6-60PB
295~315M
Hi-MO1 High Efficiency Low LID Mono PERC Technology (60C/All Black Module)

Aesthetic appearance with black frame and backsheet, best suited for rooftop installation

-0.55%
25-year Power Warranty Annual Power Attenuation -0.55%

+4.10%

Complete System and Product Certifications
IEC 61215, IEC61730, UL1703
ISO 14001:2004: ISO Environment Management System
TSG3941: Guideline for module design qualification and type approval
OSHAS 18001: 2007 Occupational Health and Safety

Positive power tolerance (0 ~ +5W) guaranteed
High-module conversion efficiency (up to 19.3%)
Slower power degradation enabled by Low LID Mono PERC technology: first year <2%, 0.55% year 3-25
Better energy yield with excellent low irradiation performance and temperature coefficient
Solid PID resistance ensured by solar cell process optimization and careful module BOM selection
Adaptable to harsh environment: passed rigorous salt mist and ammonia tests
Robust frame (40mm) withstands mechanical loading of 5400Pa for snow load on front and 2400Pa for wind load on rear side

Note: Due to continuous technical innovation, R&D and improvement, technical data above mentioned may be of modification accordingly. LONGi Solar have the sole right to make such modification at anytime without further notice, demanding party shall request for the latest datasheet for such as contract need, and make it a consisting and binding part of lawful documentation duly signed by both parties.
LR6-60PB 295~315M

Design (mm)
- Cell Orientation: SO (6+10)
- Junction Box: IPU7 three diodes
- Output Cable: 4mm², 1000mm in length
- Connector: MC4 or MC4 compatible
- Weight: 18.5kg
- Dimension: 1650x981x40mm
- Packaging: 28pcs per pallet

Mechanical Parameters
- Operational Temperature: -40°C ~ +85°C
- Power Output Tolerance: ±0.5 W
- Maximum System Voltage: DC1000V (ECE R22)
- Maximum Series Fuse Rating: 20A
- Nominal Operating Cell Temperature: 45°C
- Application Class. Class A

Operating Parameters

Electrical Characteristics

<table>
<thead>
<tr>
<th>Model Number</th>
<th>LR6-60PB-295M</th>
<th>LR6-60PB-305M</th>
<th>LR6-60PB-310M</th>
<th>LR6-60PB-315M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testing Condition</td>
<td>STC</td>
<td>NOCT</td>
<td>STC</td>
<td>NOCT</td>
</tr>
<tr>
<td>Maximum Power (Pmax,W)</td>
<td>295</td>
<td>218.5</td>
<td>200</td>
<td>222.2</td>
</tr>
<tr>
<td>**Open Circuit Voltage (Voc/V)</td>
<td>39.9</td>
<td>37.2</td>
<td>40.1</td>
<td>37.4</td>
</tr>
<tr>
<td>Short Circuit Current (Isc/A)</td>
<td>5.69</td>
<td>7.81</td>
<td>9.81</td>
<td>7.91</td>
</tr>
<tr>
<td>Voltage at Maximum Power (Vmp/V)</td>
<td>22.6</td>
<td>20.1</td>
<td>21.8</td>
<td>20.3</td>
</tr>
<tr>
<td>Current at Maximum Power (Imp/A)</td>
<td>9.65</td>
<td>7.22</td>
<td>9.15</td>
<td>7.24</td>
</tr>
<tr>
<td>Module Efficiency (%)</td>
<td>18.0</td>
<td>18.3</td>
<td>18.7</td>
<td>19.0</td>
</tr>
</tbody>
</table>

STC (Standard Testing Conditions): Irradiance 1000W/m², Cell Temperature 25°C, Spectra at AM1.5
NOCT (Nominal Operating Cell Temperature): Irradiance 800W/m², Ambient temperature 20°C, Spectra at AM1.5, Wind at 1m/s

Temperature Ratings (STC)

- Temperature Coefficient of Isc: +0.057%/°C
- Temperature Coefficient of Voc: 0.186%/°C
- Temperature Coefficient of Pmax: -0.370%/°C

Mechanical Loading
- Front Side Maximum Static Loading: 5400Pa
- Rear Side Maximum Static Loading: 2400Pa
- Salt Spray Test: 25mm Hallstone at the speed of 23m/s

I-V Curve

- Current-Voltage Curve (LR6-60PB-305M)
- Power-Voltage Curve (LR6-60PB-305M)
- Current-Voltage Curve (LR6-60PB-305M)

Note: Due to continuous technical innovation, R&D and improvement, technical data above mentioned may be of modification accordingly. LONGi Solar have the sole right to make such modification at anytime without further notice. Demanding party shall request for the latest datasheet for such as contract need, and make it a consisting and binding part of lawful documentation duly signed by both parties.

LONGi Solar

Room 203, Building 8, Sandhill Plaza, Lane 2950, Zhejiang Road, Putong Distir ct, Shanghai, 201203
Tel: +86-21-61047382 Fax: +86-21-61047577 Email: module@longi-silicon.com
Facebook: www.facebook.com/LONGiSolar

2018/03/01
Single Phase Inverter with HD-Wave Technology for North America

INVERTERS

SE3000H-US
- **Rated AC Power Output:** 3000 VA
- **Nominal AC Voltage:** 120 V
- **Input Voltage:** 120 V
- **Input Frequency:** 60 Hz

SE3800H-US
- **Rated AC Power Output:** 3800 VA
- **Nominal AC Voltage:** 240 V
- **Input Voltage:** 220-240 V
- **Input Frequency:** 50/60 Hz

SE5000H-US
- **Rated AC Power Output:** 5000 VA
- **Nominal AC Voltage:** 240 V
- **Input Voltage:** 220-240 V
- **Input Frequency:** 50/60 Hz

SE6000H-US
- **Rated AC Power Output:** 6000 VA
- **Nominal AC Voltage:** 240 V
- **Input Voltage:** 220-240 V
- **Input Frequency:** 50/60 Hz

SE7600H-US
- **Rated AC Power Output:** 7600 VA
- **Nominal AC Voltage:** 240 V
- **Input Voltage:** 220-240 V
- **Input Frequency:** 50/60 Hz

SE10000H-US
- **Rated AC Power Output:** 10000 VA
- **Nominal AC Voltage:** 240 V
- **Input Voltage:** 220-240 V
- **Input Frequency:** 50/60 Hz

SE11400H-US
- **Rated AC Power Output:** 11400 VA
- **Nominal AC Voltage:** 240 V
- **Input Voltage:** 220-240 V
- **Input Frequency:** 50/60 Hz

Optimized installation with HD-Wave technology
- Specifically designed to work with power optimizers
- Record-breaking efficiency
- Fixed voltage inverter for longer strings
- Integrated arc fault protection and rapid shutdown for NEC 2014 and 2017, per article 690.12
- UL1741 SA certified, for CPUC Rule 21 grid compliance
- Extremely small
- High-reliability without any electrolytic capacitors
- Built-in module-level monitoring
- Outdoor and indoor installation
- Optional: Revenue grade data, ANSI C12.20 Class 0.5 (0.5% accuracy)

RoHS
- European Restriction of Hazardous Substances (RoHS)
- Lead-free, compliant with CES 1022 standards
- NDMA 30 ppm limit with hazardous limits

Stability of Output Power
- 1.25% ±3% (per UL1741)

Configuration Options
- **Feature:** Net Metering
- **Capacity:** 2,000 VA to 10,000 VA
- **Input:** 120 V to 240 V
- **Output:** 240 V to 240 V
- **Frequency:** 50/60 Hz

Technical Resources
- **Manuals:** EN, ES, BR, PT, CA, NL, DE, FR, IT, JA, KO
- **Warranty:** 5 years on parts, 1 year on labor

Manufacturer: SolarEdge Technologies, Inc.
Website: www.solaredge.com

Additional Features
- **Smart+**: Ethernet, Zigbee (optional), Cellular (optional)
- **Optimate**
- **Armedno: Rapid Shutdown using AC Grid Disconnect**

STANDARD COMPLIANCE
- **UL1741, UL1741 SA, UL6241, CE, IEC, GS, NEM, CEC, FCC Part 18 Class B**

Installation Instructions
- **AC-DC Connection Diagram**
- **Wiring Diagram**
- **DC Input Connection Diagram**
- **PV String Diagram**

Contact Information
- **For inquiries:** sales@solaredge.com
- **For service:** service@solaredge.com
- **For support:** support@solaredge.com

Copyright Notice
- All rights reserved. No part of this document may be reproduced, transmitted, or translated in any form or by any means, electronic, mechanical, or otherwise, without the written consent of SolarEdge Technologies, Inc.

Disclaimer
- The information in this document is subject to change without notice.

Trademark Notice
- HD-Wave and the HD-Wave logo are trademarks and/or registered trademarks of SolarEdge Technologies, Inc.
BLACK RAILS

SOLAR PANEL LAYOUT
Scale: 1/8" = 1'-0"

NOTES:
2. SNAPBACK SOLAR MOUNT RAIL WILL BE INSTALLED IN ACCORDANCE WITH SNAPBACK INSTALLATION MANUAL.
3. DIMENSIONS MARKED (*) ARE ALONG ROOF SLOPE.
4. REFER TO STRUCTURAL DRAWING FOR SECTIONS MARKED AND ADDITIONAL NOTES.