MONTGOMERY COUNTY HISTORIC PRESERVATION COMMISSION
STAFF REPORT

Address: 8712 2nd Avenue, Silver Spring
Meeting Date: 10/11/17

Resource: Contributing Resource
Report Date: 10/04/17
Woodside Locational Atlas District

Applicant: Wexford Homes, LLC
Public Notice: 09/27/17

Review: HAWP
Tax Credit: n/a

Case Number: 36/04-A
Staff: Dan Bruechert

Proposal: Building Demolition

STAFF RECOMMENDATION
Staff recommends the HPC approve condition the HAWP application.

ARCHITECTURAL DESCRIPTION
SIGNIFICANCE: Contributing to the Woodside Locational Atlas District
STYLE: Traditional
DATE: c.1915

The house is a two-story, front gable house, with vinyl siding, and a small one-story front porch. All of the historic windows have been replaced with vinyl windows. It appears as though the fenestration pattern has been heavily altered as the is a single window to the left of the central, front door and two windows to the right; the second floor has a paired window on the left side and a single window to the right. This appearance is not consistent with any building style from the first quarter of the 20th century.

There is a one-story, detached garage on the right side to the rear of the house. It is difficult to determine a date of this structure, due to the vinyl cladding and overgrowth of vegetation around the foundation, but it does not appear to be historic.

BACKGROUND
This property is located in a district listed in the “Locational Atlas and Index of Historic Sites in Montgomery County, Maryland.” Properties with this designation are not typically subject to review by the HPC, however, because the applicants are proposing to demolish the structure, Staff believes that this triggers 24A-10 in the County Code, which requires the review of demolition of structures in the Locational Atlas under the provisions of 24A-7 (the HAWP procedure).
PROPOSAL
The applicant proposes to demolish the house and to construct a new house on the site. The new construction will be evaluated as a preliminary review independent of this HAWP.

APPLICABLE GUIDELINES
Proposed alterations to resources listed in Locational Atlas Districts are given a lenient review under Montgomery County Code Chapter 24A (Chapter 24A) and the Secretary of the Interior’s Standards for Rehabilitation (Standards). Rehabilitation is defined as the act or process of making possible a compatible use for a property through repair, alterations, and additions while preserving those portions or features, which convey its historical, cultural, or architectural values.

Montgomery County Code, Chapter 24A Historic Resources Preservation
(a) The commission shall instruct the director to deny a permit if it finds, based on the evidence and information presented to or before the commission that the alteration for which the permit is sought would be inappropriate, inconsistent with or detrimental to the preservation, enhancement or ultimate protection of the historic site or historic resource within an historic district, and to the purposes of this chapter.
(b) The commission shall instruct the director to issue a permit, or issue a permit subject to such conditions as are found to be necessary to insure conformity with the purposes and requirements of this chapter, if it finds that:
(1) The proposal will not substantially alter the exterior features of an historic site or historic resource within an historic district; or
(2) The proposal is compatible in character and nature with the historical, archeological, architectural or cultural features of the historic site or the historic district in which an historic resource is located and would not be detrimental thereto or to the achievement of the purposes of this chapter; or
(3) The proposal would enhance or aid in the protection, preservation and public or private utilization of the historic site or historic resource located within an historic district in a manner compatible with the historical, archeological, architectural or cultural value of the historic site or historic district in which an historic resource is located; or
(4) The proposal is necessary in order that unsafe conditions or health hazards be remedied; or
(5) The proposal is necessary in order that the owner of the subject property not be deprived of reasonable use of the property or suffer undue hardship; or
(6) In balancing the interests of the public in preserving the historic site or historic resource located within an historic district, with the interests of the public from the use and benefit of the alternative proposal, the general public welfare is better served by granting the permit.
(c) It is not the intent of this chapter to limit new construction, alteration or repairs to any 1 period or architectural style.
(d) In the case of an application for work on an historic resource located within an historic district, the commission shall be lenient in its judgment of plans for structures of little historical or design significance or for plans involving new construction, unless such plans would seriously impair the historic or architectural value of surrounding historic resources or would impair the character of the historic district. (Ord. No. 9-4, § 1; Ord. No. 11-59.)

Secretary of the Interior’s Standards for Rehabilitation

2. The historic character of a property will be retained and preserved. The removal of distinctive materials or alteration of features, space and spatial relationships that characterize a property will be avoided.
6. Deteriorated historic features will be repaired rather than replaced. Where the severity of deterioration requires replacement of a distinctive feature, the new feature will match the old in design, color, texture, and, where possible, materials. Replacement of missing features will be substantiated by documentary and physical evidence.

STAFF DISCUSSION

The applicant is proposing to demolish the house and the garage. The applicant is developing plans for construction of a new house on the lot, but these plans are not reviewed as part of this HAWP.

Staff's records indicate that the building was constructed c.1915, however, there does not appear to be any remaining exterior historic fabric visible. Based on observations from a site visit, Staff has determined that there are no remaining historic windows or doors and the siding has either been replaced or covered in vinyl siding. Additionally, the window openings on the front façade suggest that the building has been heavily modified sometime after the period of construction. The building has been unoccupied for an unknown length of time.

The applicant has presented an environmental inspection showing the presence of both asbestos and mold throughout the building. Staff acknowledges that most buildings of this era have a variety of asbestos-containing materials, however asbestos does not present a danger to occupants unless the material is degrading. The asbestos-containing materials are stable and are not a hazard to potential occupants and are not a reasonable justification for demolishing this building. The mold, however, is a more significant problem. It has infiltrated all spaces and surfaces and most of the interior materials will need to be removed to mitigate the problem. In conducting a site visit, staff recognized the apparent presence of mold on the exterior vinyl cladding which would suggest that there is likely significant mold infiltration in any historic cladding that may be extant as well. In Staff's opinion, the presence of mold alone is not sufficient to justify demolition of a structure in either a Master Plan district or a Locational Atlas District, though some support for this proposal can be found in 24A8-(b)(4).
While Staff does not feel that the extensive mold growth alone supports approving the demolition, when that is coupled with the loss of the historic fabric and character, Staff feels the proposal can be supported under 24A8-(d). The date of the structure could not be determined based on observation of the building from Staff’s site visit. Because of the vinyl cladding, Staff could not even determine if the form of the building was consistent with its historic appearance. As this structure is located in a Locational Atlas district, the review should be more lenient than a building in a Master Plan District. Typically, an applicant is asked to remove the non-historic cladding to determine the condition of any historic cladding. Staff does not believe that this is necessary in this instance because the form and fenestration of the building have been so heavily modified.
Lastly, Staff feels that this demolition is acceptable because, if this Locational Atlas district were to be reviewed as a potential Master Plan district, the subject property would be determined to be a non-contributing resource regardless of its original date of construction. Based on the subject property's total loss of integrity and failure to contribute to the character of the surrounding district, staff supports the proposed demolition of this property.

STAFF RECOMMENDATION
Staff recommends the HPC **approve** the HAWP application;

and with the general condition applicable to all Historic Area Work Permits that the applicant will present **3 permit sets** of drawings to HPC staff for review and stamping prior to submission for permits (if applicable). After issuance of the Montgomery County Department of Permitting Services (DPS) permit, the applicant will arrange for a field inspection by calling the DPS Field Services Office at 240-777-6370 prior to commencement of work and not more than two weeks following completion of work.
APPLICATION FOR
HISTORIC AREA WORK PERMIT

Contact Email: phil@cas.dc.com
Contact Person: Phillip Long - CAS Eng
Daytime Phone No.: 240-418-3204

Tax Account No.: 13-01040973
Name of Property Owner: Wexford Homes LLC
Daytime Phone No.: 301-580-3181
Address: 2600 Tower Oaks Blvd., 620, Rockville, MD 20852

Contractor: Wexford Homes LLC
Contractor Registration No.:
Agent for Owner:
Daytime Phone No.:

House Number: 8712
Street: 2nd Avenue
Nearest Cross Street: Ballard Street
Lot: 1
Block: 12
Subdivision: Leightons Addition to Woodside
Lot:
Block:

PART ONE: THE DEFERRED ACTION AND USE

1A. CHECK ALL APPLICABLE:
[] Construct [] Extend [] Alter/Remodel
[] Add [] Shab [] Room Addition [] Porch [] Deck [] Spa
[] Move [] Install [] Whole/Renovate
[] Solar [] Fireplace [] Woodburning Stove [] Single Family
[] Revisions [] Repair [] Revocable
[] Fence/Wall (complete Section 4) [] Other:

1B. Construction cost estimate: $1,000

1C. If this is a revision of a previously approved active permit, see Permit #

PART TWO: THE IMPACT ON THE HISTORIC PROPERTIES

2A. Type of sewage disposal: 01 [] WSSC 02 [] Septic 03 [] Other:

2B. Type of water supply: 01 [] WSSC 02 [] Well 03 [] Other:

PART THREE: COMPLETE ONLY FOR FENCE, RETAINING WALL

3A. Height:
feet inches

3B. Indicate whether the fence or retaining wall is to be constructed on one of the following locations:
[] On party line/property line [] Entirely on land of owner [] On public right of way/assessment

[Signature]

I hereby certify that I have the authority to make the foregoing application, that the application is correct, and that the construction will comply with plans approved by all agencies listed and I hereby acknowledge and accept this to be a condition for the issuance of this permit.

Authorized on behalf of owner:
[Signature]

Applicant:

Disapproval: _______________________________

Application/Permit No.:

SEE REVERSE SIDE FOR INSTRUCTIONS

S1625
THE FOLLOWING ITEMS MUST BE COMPLETED AND THE REQUIRED DOCUMENTS MUST ACCOMPANY THIS APPLICATION.

1. WRITTEN DESCRIPTION OF PROJECT
 a. Description of existing structure(s) and environmental setting, including their historical features and significance:

 Vacant Detached Single Family Home Built Circa 1993

 b. General description of project and its effect on the historic resource(s), the environmental setting, and, where applicable, the historic district:

 Proposed demolition of a non-historic single-family home. Due to the amount of asbestos and mold the house is uninhabitable, please see the attached environmental reports. Also attached is a concept drawing for the new home.

2. SITE PLAN
 Site and environmental setting, drawn to scale. You may use your plot. Your site plan must include:
 a. the scale, north arrow, and date;
 b. dimensions of all existing and proposed structures;
 c. site features such as walkways, driveways, fences, ponds, streams, trash dumpsters, mechanical equipment, and landscaping.

3. PLANS AND ELEVATIONS
 You must submit 2 copies of plans and elevations in a format no larger than 11" x 17". Plans on 8 1/2" x 11" paper are preferred.
 a. Schematic construction plans, with marked dimensions, indicating location, size and general type of walls, window and door openings, and other fixed features of both the existing resource(s) and the proposed work.
 b. Elevations (facades), with marked dimensions, clearly indicating proposed work in relation to existing construction and, when appropriate, context. All materials and fixtures proposed for the facade must be noted on the elevations drawings. An existing and a proposed elevation drawing of each facade affected by the proposed work is required.

4. MATERIALS SPECIFICATIONS
 General description of materials and manufactured items proposed for incorporation in the work of the project. This information may be included on your design drawings.

5. PHOTOGRAPHS
 a. Clearly labeled photographic prints of each facade of existing resource, including details of the affected portions. All labels should be placed on the front of photographs.
 b. Clearly label photographic prints of the resource as viewed from the public right-of-way and of the adjoining properties. All labels should be placed on the front of photographs.

6. TREE SURVEY
 If you are proposing construction adjacent to or within the drip line of any tree 6" or larger in diameter (at approximately 4 feet above the ground), you must file an accurate tree survey identifying the size, location, and species of each tree to at least that dimension.

7. ADDRESSES OF ADJACENT AND CONFRONTING PROPERTY OWNERS
 For all projects, provide an accurate list of adjacent and confronting property owners (not tenants), including names, addresses, and zip codes. This list should include the owners of all lots or parcels which adjoin the parcel in question, as well as the owner(s) of lot(s) or parcel(s) which lie directly across the street/property from the parcel in question.

PLEASE PRINT IN BLUE OR BLACK INK OR TYPE THIS INFORMATION ON THE FOLLOWING PAGE. PLEASE STAY WITHIN THE GUIDES OF THE TEMPLATE, AS THIS WILL BE PHOTOCOPIED DIRECTLY INTO MAILING LABELS.
HAWP Application: Mailing Addresses for Notifying
[Owner, Owner’s Agent, Adjacent and Confronting Property Owners]

<table>
<thead>
<tr>
<th>Owner’s mailing address</th>
<th>Owner’s Agent’s mailing address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doug Stein - Wexford Homes</td>
<td>Phillip Long</td>
</tr>
<tr>
<td>2600 Tower Oaks Blvd, Suite 620</td>
<td>CAS Engineering</td>
</tr>
<tr>
<td>Rockville, MD 20852</td>
<td>10 S Beitz St.</td>
</tr>
<tr>
<td></td>
<td>Frederick, MD 21701</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adjacent and confronting Property Owners mailing addresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peter Murtha & Mary Andrews</td>
</tr>
<tr>
<td>8710 2nd Ave</td>
</tr>
<tr>
<td>Silver Spring, MD 20910</td>
</tr>
<tr>
<td>Walter Pitcher & Tasneem Hussain</td>
</tr>
<tr>
<td>8714 2nd Ave</td>
</tr>
<tr>
<td>Silver Spring, MD 20910</td>
</tr>
<tr>
<td>Margaret Ann Donnelly Trust</td>
</tr>
<tr>
<td>8717 2nd Ave</td>
</tr>
<tr>
<td>Silver Spring, MD 20910</td>
</tr>
<tr>
<td>Shawn Donnelly</td>
</tr>
<tr>
<td>8715 2nd Ave</td>
</tr>
<tr>
<td>Silver Spring, MD 20910</td>
</tr>
<tr>
<td>Leonard Stamm</td>
</tr>
<tr>
<td>8713 2nd Ave</td>
</tr>
<tr>
<td>Silver Spring, MD 20910</td>
</tr>
<tr>
<td>James Specht & Erin Kelly</td>
</tr>
<tr>
<td>1610 Ballard Street</td>
</tr>
<tr>
<td>Silver Spring, MD 20910</td>
</tr>
<tr>
<td>Owner's mailing address</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adjacent and confronting Property Owners mailing addresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>William & Starr Skj erad</td>
</tr>
<tr>
<td>1608 Ballard Street</td>
</tr>
<tr>
<td>Silver Spring, MD 20910</td>
</tr>
</tbody>
</table>
August 28, 2017

Historic Preservation
8787 Georgia Avenue
Silver Spring, MD 20910

Re: 8712 2nd Avenue, Silver Spring, MD 20910
Lot 7, Block 12, Leightons Addition to Woodside
HAWP Application Submittal

To Whom It Concerns,

The attached HAWP application is for the proposed demolition of a non-historic detached single family home. Due to sever amounts of asbestos and mold the house is uninhabitable. Attached are the following for your review:

- Signed HAWP application
- Mold and Asbestos Inspection Reports
- Ratified Sales Contract
- 2 Copies of the Existing Conditions Site Plan
- 2 Copies of the New House Concept
- Photos of the Existing House

Please don’t hesitate to contact myself or the applicant with any questions.

Sincerely,

Phillip Long
Permit Technician
July 31, 2017

Doug P. Stein
Wexford Homes, LLC
2600 Towers Oaks Blvd., Suite 620
Rockville MD 20852

RE: Mold and Asbestos Inspection – (Vacant Residence, 7 years)
8712 2nd Avenue, Silver Spring MD 20910
ACM Project #MD24448DM

Dear Mr. Stein:

ACM Services, Inc. engaged the services of BOGG Environmental Consultants (BEC) to complete the mold and asbestos inspection on July 13, 2017 within the abandoned structure at the referenced project location. Attached please find their completed reports.

The property was confirmed to have asbestos containing flooring in multiple locations. Any activity involving renovations, maintenance, repair or razing must follow the Maryland Department of the Environment, USEPA and OSHA governing regulations. In addition, please note no testing was performed on any exterior building materials, roofing, siding, etc. These items should also be tested prior to any activity involving renovations, maintenance, repair and/or razing.

Mold was visibly identified throughout the structure to include framing elements. In addition, Viable Fungal air sampling confirm elevated concentrations within the structure compared the exterior concentrations.

Based on the condition of this structure, ACM Services supports BEC recommendation to engage a professional A/E firm to evaluate estimated costs of structural stability, building envelope repair, decontamination and abatement of all porous and non-porous building components and compare to razing of the structure. In the absence of building envelope and mechanical repair, water damage and microbial growth will continue to expand. Furthermore, based on BEC assessment, to confirm all microbial growth has been successfully remediated all building construction materials will need removed down to the slab and exterior foundation perimeter walls to efficiently evaluated all enclosed areas.

It is my opinion that the entire structure needs to be deconstructed down to the foundation to eradicate all the mold with in the structure. Should you need our services again or require additional information, please feel free to call.

Sincerely,

[Signature]

Dale R. McGuire
Vice President of Operations
Maryland Asbestos Supervisor/Inspector 16012201/16027171
Mold Remediation Supervisor 03-4974

Attachments: BEC Reports, Asbestos July 19, 2017 and Mold July 26, 2017
ASBESTOS-CONTAINING MATERIALS SURVEY

Conducted at:

8712 2nd Avenue
Silver Spring, Maryland 20910

Prepared for:

ACM SERVICES, INC.
12022 Parklawn Drive
Rockville, Maryland 20852

Attention: Mr. Dale McGuire
Vice President of Operations
dale@acmservices.com

BEC Project # MD17162

Fieldwork Conducted: July 12, 2017

Final Technical Report Date: July 19, 2017

Prepared by:

BOGGS ENVIRONMENTAL CONSULTANTS
Middletown, MD ~ Morgantown, WV
Corporate Office: 200 W Main Street, Middletown, MD 21769
Tel: (301) 694-5687 ~ Fax: (301) 694-9799

ENVIRONMENTAL SCIENCE, ENGINEERING & INDUSTRIAL HYGIENE SERVICES
ASBESTOS-CONTAINING MATERIALS SURVEY

Conducted at:
8712 2nd Avenue
Silver Spring, Maryland 20910

TABLE OF CONTENTS

SECTION 1.0 SITE DESCRIPTION 1

SECTION 2.0 ASBESTOS-CONTAINING MATERIAL SURVEY 1
Section 2.1 Background 1
Section 2.2 Field Sampling 2
Section 2.3 Material Classification 2
Section 2.4 Laboratory Analysis 3
Section 2.5 Asbestos Survey Limitations 5

SECTION 3.0 CONCLUSIONS & RECOMMENDATIONS 5
Section 3.1 Conclusions 5
Section 3.2 Recommendations 6

TABLES
TABLE A: US EPA Minimum Number of Bulk Samples Required to Rebut ACM Designation
TABLE B: Asbestos-Containing Material Testing Results
TABLE C: Asbestos-Containing Materials

APPENDICES
APPENDIX A: Homogeneous Area Photo Sheet
APPENDIX B: BEC Bulk Sampling Locations
APPENDIX C: SAI Laboratory Analytical Results & Chain of Custody
APPENDIX D: BEC Staff Qualifications

BOGGS ENVIRONMENTAL CONSULTANTS, INC.

On-site Fieldwork & Final Technical Report By:

Derrick A. Klein
Environmental Specialist
State of Maryland Asbestos Inspector (License No. 17016511)

ENVIRONMENTAL SCIENCE, ENGINEERING & INDUSTRIAL HYGIENE SERVICES
SECTION 1.0 SUBJECT SITE DESCRIPTION & SCOPE OF WORK

Project Site: 8712 2nd Avenue,
Silver Spring, Maryland 20910

Requester Name: Mr. Dale McGuire, Vice President of Operations

Requestor Address: ACM SERVICES, INC.
12022 Parklaw Drive
Rockville, Maryland 20852

Subject Site Description & Scope of Work:

The focus of this inspection was the readily-accessible suspect asbestos-containing materials located at 8712 2nd Avenue, Silver Spring, Maryland 20910; hereinafter referred to as the subject site. The two story subject site was approximately two thousand (2,000 gsf) gross square feet with an open floor layout within each floor.

BEC received authorization from Mr. Dale McGuire, Vice President with ACM Services, to provide industrial hygiene services to determine the presence of asbestos-containing materials located within the subject site. BEC advises, this asbestos inspection was focused solely on readily accessible interior suspect asbestos-containing materials of the subject site that were identified and designated for bulk sampling by the client. Therefore, BEC makes no references or representations regarding the presence or absence of asbestos-containing materials not included in the scope of this survey.

SECTION 2.0 LIMITED ASBESTOS-CONTAINING MATERIALS SURVEY

2.1 Background

BEC conducted an asbestos-containing building construction materials (ACBMs) survey within the subject site, located at 8712 2nd Avenue, Silver Spring, Maryland 20910 on July 12, 2017.

BEC conducted interviews with Mr. Dale McGuire, Vice President of Operations for ACM Services, to become familiar with the building history and any potential limits of the inspection, prior to proceeding with the field inspection activities. BEC notes, only readily accessible interior materials identified at the subject site were sampled during the course of this limited asbestos-containing materials survey. BEC cautions that additional suspect asbestos-containing building construction materials may exist outside this limited asbestos inspection scope of work; but were not sampled during the conduct of this work effort.

SECTION 2.0 LIMITED ASBESTOS-CONTAINING MATERIALS SURVEY

2.2 Field Sampling

BEC staff licensed State of Maryland Department of the Environment (MDE) “Asbestos Inspector”, Derrick A. Klein, conducted preliminary field walk inspections for the purpose of developing an inventory of suspect ACBMs associated with the scheduled renovations within the areas of concern at the subject site. Subsequently, Mr. Klein collected multiple bulk samples of suspect asbestos-containing materials observed at the subject site on July 12, 2017.

BEC advises, based upon current United States Environmental Protection Agency (US EPA) asbestos hazard control regulations, the minimum number of samples necessary to definitively determine the presence (or absence) of ACBMs is dependent on the nature and quantity of the suspect building construction material. Additionally, the US EPA has established a standardized schedule for bulk sample collection of suspect ACBMs based upon homogeneous areas. Homogeneous areas are defined as “...building construction materials that are similar in color, consistency, texture, and appearance of similar application/installation time period”.

8712 2nd AVENUE
SILVER SPRING, MARYLAND 20910

LIMITED ASBESTOS-CONTAINING MATERIALS SURVEY
FINAL TECHNICAL REPORT
SECTION 2.0 LIMITED ASBESTOS-CONTAINING MATERIALS SURVEY

2.2 **Field Sampling** (continued)

Based upon on-site visual inspection and bulk sampling guidelines, seventeen (17) samples of the suspect ACBM were collected and submitted to the analytical laboratory; which upon standard polarized light microscopy with dispersion staining (PLM/DS) examination revealed the presence of twenty-seven (27) individual PLM/DS layers.

BEC advises, based upon the US EPA asbestos regulations’ prescribed (mandatory) analytical method, the laboratory analyst has the sole discretion/responsibility in determining whether the bulk sample is composed of one or multiple layers.

2.3 **Material Classification**

Asbestos-containing materials (ACMs) are any building construction materials containing greater than one percent (>1%) asbestos. Friable ACM is any material which can be broken, crumbled, pulverized, or reduced to powder under hand pressure; conversely, non-friable ACMs are materials incapable of reduction to powder via hand pressure.

In accordance with Federal asbestos hazard control regulations (40 CFR Part 763 - Asbestos, Subpart E), bulk sampling is not required to designate (i.e., presume and treat) a construction material suspected to contain asbestos as Presumed Asbestos-Containing Material (PACM), should a duly trained and accredited asbestos inspector observe/inspect and assign the PACM designation to the suspect ACM.

However, BEC advises, in accordance with Federal regulations, rebuttal of the PACM designation and reclassification of a material to non-ACM, requires collection and analysis of a minimum number of samples of the suspect ACM. As a reminder, a homogeneous material is a unique group of construction materials (e.g., surfacing material, thermal system insulation material, or miscellaneous material) that possesses uniform properties such as color, texture, age, and functionality.

For a summary of the minimum number of samples required to undergo collection and analysis to rebut the PACM designation, please refer to **TABLE A: US EPA Minimum Number of Bulk Samples Required to Rebut ACM Designation**.

TABLE A: US EPA Minimum Number of Bulk Samples Required to Rebut ACM Designation

<table>
<thead>
<tr>
<th>Thermal System Insulation (TSI):</th>
<th>Surfacings Material:</th>
<th>Miscellaneous Material and Non-friable Suspect ACM:</th>
</tr>
</thead>
<tbody>
<tr>
<td>At least three (3) samples from each homogeneous material of TSI.</td>
<td>At least five samples from homogeneous materials of greater than 1,000 square feet but less than 5,000 square feet.</td>
<td>For each homogeneous material, a sufficient number are required to be collected and analyzed to determine if the material is ACM.</td>
</tr>
<tr>
<td>At least one (1) sample from patched TSI that is less than six square feet.</td>
<td>At least seven samples from homogeneous materials of greater than 5000 square feet, with an additional 1 sample per each increment of 1,000 sf, in excess of 5,000 sf.</td>
<td>Samples are not required to be collected from homogeneous materials, of which the trained accredited asbestos inspector has determined to be non-asbestos-containing material, such as fiberglass or rubber.</td>
</tr>
</tbody>
</table>
2.4 Laboratory Analysis

Pursuant to the field screen and bulk sample collection, BEC submitted the bulk samples to Scientific Analytical Institute (SAI) of Greensboro, North Carolina for asbestos content analysis. SAI is fully accredited by the American Industrial Hygiene Association and the National Institute of Standards and Technology’s (NIST) National Voluntary Laboratory Accreditation Program (NVLAP) as proficient in the analysis of asbestos in bulk samples.

SAI performed PLM/DS analysis of all bulk samples, in accordance with the "Test Method for the Determination of Asbestos in Bulk Building Materials" (US EPA 600/R-93/116, July 1993). BEC advises PLM/DS analysis revealed four (4) of the suspect ACM bulk samples submitted to SAI contained US EPA and United States Occupational Safety and Health Administration (OSHA) regulated asbestos concentrations (>1%). BEC provides the results of the PLM/DS analyses hereunder in TABLE B: Asbestos-Containing Material Testing Results:

<table>
<thead>
<tr>
<th>HA #</th>
<th>Sample #</th>
<th>Material Class</th>
<th>Sampling Location</th>
<th>Building Construction Material</th>
<th>Asbestos (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SP-1</td>
<td>Surfacing</td>
<td>Basement Shop</td>
<td>Textured Ceiling</td>
<td>None Detected</td>
</tr>
<tr>
<td>1</td>
<td>SP-2</td>
<td>Surfacing</td>
<td>Basement Hallway</td>
<td>Textured Ceiling</td>
<td>None Detected</td>
</tr>
<tr>
<td>1</td>
<td>SP-3</td>
<td>Surfacing</td>
<td>Basement Shop</td>
<td>Textured Ceiling</td>
<td>None Detected</td>
</tr>
<tr>
<td>2</td>
<td>SP-4</td>
<td>Misc.</td>
<td>Basement Utility Hallway</td>
<td>12” x 12” Brown Wood Pattern Vinyl Floor Tile</td>
<td>3% Chrysotile</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Associated Brown Mastic</td>
<td>None Detected</td>
</tr>
<tr>
<td>3</td>
<td>SP-5</td>
<td>Misc.</td>
<td>Basement Bathroom</td>
<td>12” x 12” Beige Vinyl Floor Tile</td>
<td>3% Chrysotile</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Associated Brown Mastic</td>
<td>None Detected</td>
</tr>
<tr>
<td>4</td>
<td>SP-6</td>
<td>TSI</td>
<td>Basement Laundry Room</td>
<td>Insulation Sleeve on Wood Stove Flue</td>
<td>70% Chrysotile</td>
</tr>
<tr>
<td>5</td>
<td>SP-7</td>
<td>Misc.</td>
<td>1st Floor Kitchen Ceiling</td>
<td>Gypsum Board System & Joint Compound</td>
<td>None Detected</td>
</tr>
<tr>
<td>5</td>
<td>SP-8</td>
<td>Misc.</td>
<td>1st Floor Family Room Wall</td>
<td>Gypsum Board System & Joint Compound</td>
<td>None Detected</td>
</tr>
<tr>
<td>6</td>
<td>SP-9</td>
<td>Misc.</td>
<td>1st Floor Rear Closet</td>
<td>12” x 12” Beige Stone Pattern Vinyl Floor Tile</td>
<td>4% Chrysotile</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Associated Yellow Mastic</td>
<td>None Detected</td>
</tr>
<tr>
<td>7</td>
<td>SP-10</td>
<td>Misc.</td>
<td>2nd Floor SW Bed Rm</td>
<td>Gypsum Board System & Joint Compound</td>
<td>None Detected</td>
</tr>
<tr>
<td>7</td>
<td>SP-11</td>
<td>Misc.</td>
<td>2nd Floor Bathroom #2</td>
<td>Pink Ceramic Floor Tile</td>
<td>None Detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Associated White Grout</td>
<td>None Detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Associated Yellow Mastic</td>
<td>None Detected</td>
</tr>
<tr>
<td>8</td>
<td>SP-12</td>
<td>Misc.</td>
<td>2nd Floor Bathroom #3</td>
<td>4” x 4” Blue Ceramic Wall Tile</td>
<td>None Detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Associated Yellow Mastic</td>
<td>None Detected</td>
</tr>
<tr>
<td>9</td>
<td>SP-13</td>
<td>Misc.</td>
<td>2nd Floor Bathroom #3</td>
<td>1” x 2” Blue Ceramic Floor Tile</td>
<td>None Detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Associated Yellow Mastic</td>
<td>None Detected</td>
</tr>
<tr>
<td>10</td>
<td>SP-14</td>
<td>Misc.</td>
<td>Back Porch Roof</td>
<td>Green Asphalt Roofing Shingle</td>
<td>None Detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Associated Black Adhesive</td>
<td>None Detected</td>
</tr>
<tr>
<td>11</td>
<td>SP-15</td>
<td>Misc.</td>
<td>1st Floor Bathroom #4</td>
<td>1” x 2” Pink Ceramic Floor Tile</td>
<td>None Detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Associated Yellow Mastic</td>
<td>None Detected</td>
</tr>
</tbody>
</table>
SECTION 2.0 LIMITED ASBESTOS-CONTAINING MATERIALS SURVEY

2.4 **Laboratory Analysis** (continued)

<table>
<thead>
<tr>
<th>HA #</th>
<th>Sample #</th>
<th>Material Class</th>
<th>Sampling Location</th>
<th>Building Construction Material</th>
<th>Asbestos (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>SP-16</td>
<td>Misc.</td>
<td>1st Floor Kitchen</td>
<td>Grey/Black Asphalt Roofing Shingle</td>
<td>None Detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Associated White Mortar</td>
<td>None Detected</td>
</tr>
<tr>
<td>13</td>
<td>SP-17</td>
<td>Misc.</td>
<td>Roof of Shed (Same as Main Roof)</td>
<td>Grey/Black Asphalt Roofing Shingle</td>
<td>None Detected</td>
</tr>
</tbody>
</table>

2.5 **Asbestos Survey Limitations**

The above inspection was characterized by making observations for suspect ACBMs and conducting bulk sampling of same, limited to only readily-accessible building areas at the subject site specified by the client. All accessible areas within the scope of work were inspected in accordance with US EPA regulations and generally accepted engineering work practices.

BEC asbestos survey sampling strategy included collection of multiple samples of the same materials chosen at random. However, BEC advises, due to the inconsistencies of manufacturer processes and contractor installation methods, materials of similar construction may have varied quantities of asbestos.

Furthermore, BEC advises locating all asbestos-containing materials present at a structure can only be definitively achieved by bulk sampling every section of pipe insulation, every fitting or valve covering, every square yard of fireproofing, and every square foot of other surface coating materials, for suspect materials both readily-accessible and hidden. BEC was unable to sample the main roof sample due to no accessibility and is outside the scope of work.

Therefore, BEC makes no warranty, expressed or implied, that all asbestos within the subject site has been found. Accordingly, BEC recommends bulk sampling and analysis of all suspect ACBMs (not otherwise evaluated during this survey) during work which will, or can be reasonably anticipated to, result in the disturbance or damage of same, prior to commencement and/or during demolition/renovation work.

SECTION 3.0 CONCLUSIONS & RECOMMENDATIONS

3.1 **Conclusions**

1. BEC concludes, based upon onsite visual inspection and review of analytical data, US EPA-regulated asbestos-containing materials were identified at the subject site and are listed hereunder in **TABLE C: Asbestos-Containing Materials**.

<table>
<thead>
<tr>
<th>Building Construction Material</th>
<th>Material Location(s)</th>
<th>EPA Regulated</th>
<th>OSHA Regulated</th>
<th>Quantity*</th>
</tr>
</thead>
<tbody>
<tr>
<td>12" x 12" Brown Wood Pattern Vinyl Floor Tile</td>
<td>Basement Utility Hallway</td>
<td>YES</td>
<td>YES</td>
<td>~ 375 SF</td>
</tr>
<tr>
<td>12" x 12" Beige Vinyl Floor Tile</td>
<td>Basement Bathroom</td>
<td>YES</td>
<td>YES</td>
<td>~ 60 SF</td>
</tr>
<tr>
<td>Insulation Sleeve on Wood Stove Flue</td>
<td>Basement Laundry Room</td>
<td>YES</td>
<td>YES</td>
<td>~ 3 SF</td>
</tr>
<tr>
<td>12" x 12" Beige Stone Pattern Vinyl Floor Tile</td>
<td>1st Floor Rear Closet</td>
<td>YES</td>
<td>YES</td>
<td>~ 21 SF</td>
</tr>
</tbody>
</table>

*BEC advises that these quantifications are solely estimations based on the square footage of the materials in question that was visibly observed within the subject site. Therefore, it is incumbent upon the general and/or asbestos abatement contractor to verify these quantities prior to the commencement of any demolition/renovation activities that may impact asbestos-containing materials within the subject site.
3.1 **Conclusions** (Continued)

2. BEC concludes, based upon review of US EPA and State of Maryland Department of the Environment law, specific regulations governing the disturbance, removal, and disposal of asbestos, **DO APPLY to ANY** work, of which is planned and/or can be reasonably anticipated to result in the disturbance of the asbestos-containing materials identified in the course of this inspection.

3. BEC concludes, based upon review of United States Occupational Safety and Health Administration (Construction Industry: 29 CFR 1926.1101 and General Industry: 29 CFR 1910.1001) regulations governing non-occupational and occupational exposure to asbestos, **DO APPLY to ANY** renovation/demolition, housekeeping, maintenance, and/or repair activities directly and/or indirectly impacting (disturbance/damage) the asbestos-containing materials.

3.2 **Recommendations**

1. In the event the client elects to abate any asbestos-containing materials identified at the subject site, BEC recommends a third-party Industrial Hygiene firm perform baseline, continuous, and post abatement air quality surveillance at the asbestos abatement work area(s) prior to permitting re-occupancy of the work area(s).

2. BEC recommends should any planned renovation activities result in the discovery of additional suspect ACBMs, halting all work activities with subsequent bulk sample collection and analysis of discovered ACBMs, to determine asbestos content.

PLM/DS Limitations

BEC advises all bulk samples were analyzed by Polarized Light Microscopy with Dispersion Staining (PLM/DS). This is a standard method of analysis in optical mineralogy and a suspect material is immersed in a solution of known refractive index and subjected to illumination by polarized light. The resultant characteristic color display enables mineral identification.

Although PLM/DS analysis is the primary technique used for asbestos determination, it can show significant bias leading to false negatives and false positives for certain types of materials. PLM is limited by the visibility of the asbestos fibers. In some samples the fibers may be reduced to a diameter so small or masked by coatings to such an extent that they cannot be reliably observed or identified using PLM.

As such, BEC recommends further evaluation via gravimetric reduction sample preparation technique and PLM/DS analysis with subsequent TEM analysis (10,000-20,000x magnification), should inconclusive PLM results persists, prior to designation as "non-asbestos-containing".
APPENDIX A

HOMOGENEOUS AREA PHOTO SHEET
HA #1: Textured Ceiling

HA #2: 12” x 12” Brown Wood Pattern Vinyl Floor Tile

HA #3: 12” x 12” Beige Vinyl Floor Tile
HA #4: Insulation Sleeve on Wood Stove Flue

HA #5: Gypsum Board Sheeting & Joint Finishing Compound

HA #6: 12" x 12" Beige Stone Pattern Vinyl Floor Tile
HA #7: Pink Ceramic Floor Tile & Associated Grout

HA #8: 4" x 4" Blue Ceramic Wall Tile & Associated Grout

HA #9: 1" x 2" Blue Ceramic Floor Tile & Associated Grout

ENVIRONMENTAL SCIENCE, ENGINEERING & INDUSTRIAL HYGIENE SERVICES
HA #10: Green Asphalt Roof Shingles & Associated Adhesive

HA #11: 1" x 2" Pink Ceramic Floor Tile & Associated Grout

HA #12: 6" x 6" White Ceramic Floor Tile & Associated Grout
APPENDIX B

BEC BULK SAMPLING LOCATIONS
<table>
<thead>
<tr>
<th>Sample</th>
<th>DA #</th>
<th>Location</th>
<th>Description</th>
<th>Quantity (sq. ft.)</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP - 1</td>
<td>1</td>
<td>Basement Shop</td>
<td>Textured Ceiling</td>
<td>600 sq. ft.</td>
<td>Poor</td>
</tr>
<tr>
<td>-2</td>
<td>1</td>
<td>Basement Hallway</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>-3</td>
<td>1</td>
<td>Basement Rec Room</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>-4</td>
<td>2</td>
<td>Basement Utility Hallway</td>
<td>12" x 12" Brown Wood Pattern V.F.</td>
<td>375 sq. ft.</td>
<td>Good</td>
</tr>
<tr>
<td>-5</td>
<td>3</td>
<td>Basement Bathroom</td>
<td>12" x 12" Beige V.F.</td>
<td>40 sq. ft.</td>
<td>Good</td>
</tr>
<tr>
<td>-6</td>
<td>4</td>
<td>Basement Laundry Room</td>
<td>Insulation Sleeve on Wood Stove Flue</td>
<td>3 sq. ft.</td>
<td>Damaged</td>
</tr>
<tr>
<td>-7</td>
<td>5</td>
<td>1st Floor Kitchen Ceiling</td>
<td>Gypsum Board Sheeting and Joint Compound</td>
<td>2000 sq. ft.</td>
<td>Damaged</td>
</tr>
<tr>
<td>-8</td>
<td>5</td>
<td>1st Floor Family Room Wall</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>-9</td>
<td>6</td>
<td>1st Floor Rear Closet</td>
<td>12" x 12" Beige Stone Pattern V.F.</td>
<td>21 sq. ft.</td>
<td>Good</td>
</tr>
<tr>
<td>-10</td>
<td>5</td>
<td>2nd Floor SW Bedroom</td>
<td>Gypsum Board Sheeting and Joint Compound</td>
<td>200 sq. ft.</td>
<td>Good</td>
</tr>
<tr>
<td>-11</td>
<td>7</td>
<td>2nd Floor Bathroom #2</td>
<td>Pink Ceramic Floor Tile and Grout</td>
<td>90 sq. ft.</td>
<td>Good</td>
</tr>
<tr>
<td>-12</td>
<td>8</td>
<td>2nd Floor Bathroom #3</td>
<td>4" x 4" Blue Ceramic Wall Tile and Grout</td>
<td>40 sq. ft.</td>
<td>Good</td>
</tr>
<tr>
<td>-13</td>
<td>9</td>
<td>2nd Floor Bathroom #3</td>
<td>1" x 2" Blue Ceramic Floor Tile and Grout</td>
<td>30 sq. ft.</td>
<td>Good</td>
</tr>
<tr>
<td>-14</td>
<td>10</td>
<td>Back Porch Roof</td>
<td>Green Asbestos Roof Shingles and Adhesive</td>
<td>40 sq. ft.</td>
<td>Good</td>
</tr>
<tr>
<td>-15</td>
<td>11</td>
<td>1st Floor Bathroom</td>
<td>1" x 2" Pink Ceramic Floor Tile and Grout</td>
<td>25 sq. ft.</td>
<td>Good</td>
</tr>
<tr>
<td>-16</td>
<td>12</td>
<td>1st Floor Kitchen</td>
<td>6" x 6" White Ceramic Floor Tile and Grout</td>
<td>80 sq. ft.</td>
<td>Good</td>
</tr>
<tr>
<td>-17</td>
<td>13</td>
<td>Roof Sheet (generic)</td>
<td>Gray (Black Asbestos Roof Shingle)</td>
<td>1300 sq. ft.</td>
<td>Good</td>
</tr>
</tbody>
</table>

Environmental Science & Engineering
APPENDIX C

SAI LABORATORY ANALYTICAL RESULTS

&

CHAIN OF CUSTODY
Bulk Asbestos Analysis

By Polarized Light Microscopy

EPA Method: 600/R-93/116 and 600/M4-82-020

Lab Order ID: 1714913
Analysis ID: 1714913_PLM
Date Received: 7/14/2017
Date Reported: 7/17/2017

Customer:
Boggs Environmental Consultants, Inc.
Attn: Bill Warfel
200 W Main Street
Middletown, MD 21769

Project:
MD1762 ; ACM - 8712 2nd Ave Silver Spring

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Description</th>
<th>Asbestos</th>
<th>Fibrous Components</th>
<th>Non-Fibrous Components</th>
<th>Attributes</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP-1</td>
<td>Textured Ceiling</td>
<td>None Detected</td>
<td></td>
<td>100% Other</td>
<td>White</td>
<td>Dissolved</td>
</tr>
<tr>
<td></td>
<td><code>1714913PLM_1</code></td>
<td></td>
<td></td>
<td></td>
<td>Non Fibrous Homogeneous</td>
<td></td>
</tr>
<tr>
<td>SP-2</td>
<td>Textured Ceiling</td>
<td>None Detected</td>
<td></td>
<td>100% Other</td>
<td>White</td>
<td>Dissolved</td>
</tr>
<tr>
<td></td>
<td><code>1714913PLM_2</code></td>
<td></td>
<td></td>
<td></td>
<td>Non Fibrous Homogeneous</td>
<td></td>
</tr>
<tr>
<td>SP-3</td>
<td>Textured Ceiling</td>
<td>None Detected</td>
<td></td>
<td>100% Other</td>
<td>White</td>
<td>Dissolved</td>
</tr>
<tr>
<td></td>
<td><code>1714913PLM_3</code></td>
<td></td>
<td></td>
<td></td>
<td>Non Fibrous Homogeneous</td>
<td></td>
</tr>
<tr>
<td>SP-4 - A</td>
<td>Brown 12x12-Inch Floor Tile</td>
<td>3% Chrysotile</td>
<td></td>
<td>97% Other</td>
<td>Brown</td>
<td>Dissolved</td>
</tr>
<tr>
<td></td>
<td>Wood Pattern</td>
<td></td>
<td></td>
<td></td>
<td>Non Fibrous Homogeneous</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>1714913PLM_4</code></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP-4 - B</td>
<td>Brown 12x12-Inch Floor Tile</td>
<td>None Detected</td>
<td></td>
<td>100% Other</td>
<td>Yellow, Brown</td>
<td>Dissolved</td>
</tr>
<tr>
<td></td>
<td>Wood Pattern</td>
<td></td>
<td></td>
<td></td>
<td>Non Fibrous Homogeneous</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>1714913PLM_18</code></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP-5 - A</td>
<td>Beige 12x12-Inch Floor Tile</td>
<td>3% Chrysotile</td>
<td></td>
<td>97% Other</td>
<td>Beige</td>
<td>Dissolved</td>
</tr>
<tr>
<td></td>
<td>tile</td>
<td></td>
<td></td>
<td></td>
<td>Non Fibrous Homogeneous</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>1714913PLM_5</code></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP-5 - B</td>
<td>Beige 12x12-Inch Floor Tile</td>
<td>None Detected</td>
<td></td>
<td>100% Other</td>
<td>Yellow, Brown</td>
<td>Dissolved</td>
</tr>
<tr>
<td></td>
<td>mastic</td>
<td></td>
<td></td>
<td></td>
<td>Non Fibrous Homogeneous</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>1714913PLM_19</code></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP-6</td>
<td>Insulation Sleeve on Wood</td>
<td>70% Chrysotile</td>
<td></td>
<td>5% Cellulose</td>
<td>Gray</td>
<td>Dissolved</td>
</tr>
<tr>
<td></td>
<td>Stove Flue</td>
<td></td>
<td></td>
<td></td>
<td>Non Fibrous Homogeneous</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>1714913PLM_6</code></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Disclaimer: Due to the nature of the EPA 600 method, asbestos may not be detected in samples containing low levels of asbestos. We strongly recommend that analysis of floor tiles, vermiculite, and/or heterogeneous soil samples be conducted by TEM for confirmation of "None Detected" by PLM. This report relates only to the sample tested and may not be reproduced, except in full, without the written approval of SAL. This report may not be used by the client to claim product endorsement by NVLAP or any other agency of the U.S. government. Analytical uncertainty is available upon request. Scientific Analytical Institute participates in the NVLAP Precision Testing program. Unless otherwise noted, blank sample correction was not performed. Estimated MDL is 0.1.

Philip Szabo (27)

Analyst
Scientific Analytical Institute, Inc.
4604 Dundas Dr. Greensboro, NC 27407
(336) 292-3888
Bulk Asbestos Analysis

By Polarized Light Microscopy
EPA Method: 600/R-93/116 and 600/M4-82-020

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Description</th>
<th>Asbestos</th>
<th>Fibrous Components</th>
<th>Non-Fibrous Components</th>
<th>Attributes Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP-7</td>
<td>Gypsum Board System and Joint Compound</td>
<td>None Detected</td>
<td>5% Cellulose</td>
<td>95% Other</td>
<td>Gray, White Non Fibrous Homogeneous Dissolved</td>
</tr>
<tr>
<td></td>
<td>drywall: none detect; joint compnd: none detect</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP-8</td>
<td>Gypsum Board System and Joint Compound</td>
<td>None Detected</td>
<td>5% Cellulose</td>
<td>95% Other</td>
<td>Gray, White Non Fibrous Homogeneous Dissolved</td>
</tr>
<tr>
<td></td>
<td>drywall: none detect; joint compnd: none detect</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP-9 - A</td>
<td>12x12-Inch Beige Floor Tile Stone Pattern</td>
<td></td>
<td></td>
<td>4% Chrysotile</td>
<td>Beige Non Fibrous Homogeneous Dissolved</td>
</tr>
<tr>
<td></td>
<td>tile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP-9 - B</td>
<td>12x12-Inch Beige Floor Tile Stone Pattern</td>
<td>None Detected</td>
<td></td>
<td>100% Other</td>
<td>Yellow Non Fibrous Homogeneous Dissolved</td>
</tr>
<tr>
<td></td>
<td>mastic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP-10</td>
<td>Gypsum Board System and Joint Compound</td>
<td>None Detected</td>
<td>5% Cellulose</td>
<td>95% Other</td>
<td>Gray, White Non Fibrous Homogeneous Dissolved</td>
</tr>
<tr>
<td></td>
<td>drywall: none detect; joint compnd: none detect</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP-11 - A</td>
<td>Pink Ceramic Tile Floor & Grout</td>
<td>None Detected</td>
<td></td>
<td>100% Other</td>
<td>Pink Non Fibrous Homogeneous Dissolved</td>
</tr>
<tr>
<td></td>
<td>ceramic tile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP-11 - B</td>
<td>Pink Ceramic Tile Floor & Grout</td>
<td>None Detected</td>
<td></td>
<td>100% Other</td>
<td>White Non Fibrous Homogeneous Dissolved</td>
</tr>
<tr>
<td></td>
<td>grount</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP-11 - C</td>
<td>Pink Ceramic Tile Floor & Grout</td>
<td>None Detected</td>
<td></td>
<td>100% Other</td>
<td>Yellow Non Fibrous Homogeneous Dissolved</td>
</tr>
<tr>
<td></td>
<td>mastic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Disclaimer: Due to the nature of the EPA 600 method, asbestos may not be detected in samples containing low levels of asbestos. We strongly recommend that analysis of floor tiles, vermiculite, and/or heterogeneous soil samples be conducted by TEM for confirmation of “None Detected” by PLM. This report relates only to the samples tested and may not be reproduced, except in full, without the written approval of SAC. This report may not be used by the client to claim product endorsement by NVLAP or any other agency of the U.S. government. Analytical uncertainty available upon request. Scientific Analytical Institute participates in the NVLAP Proficiency Testing program. Unless otherwise noted blank sample correction was not performed. Estimated MDL is 0.1%.

Philip Szabo (27)
Approved Signatory
Scientific Analytical Institute, Inc. 4604 Dundas Dr. Greensboro, NC 27407 (336) 292-3888
Page 2/2
Bulk Asbestos Analysis

By Polarized Light Microscopy
EPA Method: 600/R-93/116 and 600/M4-82-020

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Lab Sample ID</th>
<th>Description</th>
<th>Asbestos</th>
<th>Fibrous Components</th>
<th>Non-Fibrous Components</th>
<th>Attributes</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP-12 - A</td>
<td>714913PLM_12</td>
<td>Blue Ceramic Wall and GROUT 4x4-inch</td>
<td>None Detected</td>
<td>100% Other</td>
<td>Blue Non Fibrous Homogeneous</td>
<td>Dissolved</td>
<td></td>
</tr>
<tr>
<td>SP-12 - B</td>
<td>714913PLM_23</td>
<td>Blue Ceramic Wall and GROUT 4x4-inch</td>
<td>None Detected</td>
<td>100% Other</td>
<td>Yellow Non Fibrous Homogeneous</td>
<td>Ashed, Dissolved</td>
<td></td>
</tr>
<tr>
<td>SP-13 - A</td>
<td>714913PLM_13</td>
<td>Blue Ceramic Floor and GROUT 1x2-inch</td>
<td>None Detected</td>
<td>100% Other</td>
<td>Yellow Non Fibrous Homogeneous</td>
<td>Ashed, Dissolved</td>
<td></td>
</tr>
<tr>
<td>SP-13 - B</td>
<td>714913PLM_24</td>
<td>Blue Ceramic Floor and GROUT 1x2-inch</td>
<td>None Detected</td>
<td>100% Other</td>
<td>Yellow Non Fibrous Homogeneous</td>
<td>Ashed, Dissolved</td>
<td></td>
</tr>
<tr>
<td>SP-14 - A</td>
<td>714913PLM_14</td>
<td>Green Asphalt Roofing Shingle and Adhesive</td>
<td>None Detected</td>
<td>5% Cellulose 5% Fiber Glass</td>
<td>90% Other</td>
<td>Green, Black Non Fibrous Homogeneous</td>
<td>Dissolved</td>
</tr>
<tr>
<td>SP-14 - B</td>
<td>714913PLM_25</td>
<td>Green Asphalt Roofing Shingle and Adhesive</td>
<td>None Detected</td>
<td>100% Other</td>
<td>Black Non Fibrous Homogeneous</td>
<td>Dissolved</td>
<td></td>
</tr>
<tr>
<td>SP-15 - A</td>
<td>714913PLM_15</td>
<td>Pink Ceramic Flooring and Grout 1x2-inch</td>
<td>None Detected</td>
<td>100% Other</td>
<td>Pink Non Fibrous Homogeneous</td>
<td>Dissolved</td>
<td></td>
</tr>
<tr>
<td>SP-15 - B</td>
<td>714913PLM_26</td>
<td>Pink Ceramic Flooring and Grout 1x2-inch</td>
<td>None Detected</td>
<td>100% Other</td>
<td>Yellow Non Fibrous Homogeneous</td>
<td>Ashed, Dissolved</td>
<td></td>
</tr>
</tbody>
</table>

Disclaimer: Due to the nature of the EPA 600 method, asbestos may not be detected in samples containing low levels of asbestos. We strongly recommend that analysis of floor tiles, vermiculite, and/or heterogeneous soil samples be conducted by TEM for confirmation of “None Detected” by PLM. This report relates only to the samples tested and may not be reproduced, except in full, without the written approval of SAI. This report may not be used by the client to claim product endorsement by NVLAP or any other agency of the U.S. government. Analytical uncertainty available upon request. Scientific Analytical Institute participates in the NVLAP Proficiency Testing Program. Unless otherwise noted blank sample correction was not performed. Estimated NDLs is 0.1%.

Philip Szabo (27)

Approved Signatory

Scientific Analytical Institute, Inc. 4604 Dundas Dr. Greensboro, NC 27407 (336) 292-3888
Bulk Asbestos Analysis

By Polarized Light Microscopy
EPA Method: 600/R-93/116 and 600/M4-82-020

Customer: Boggs Environmental Consultants, Inc.
Attn: Bill Warfel
200 W Main Street
Middletown, MD 21769

Project: MD1762; ACM - 8712 2nd Ave Silver Spring

Lab Order ID: 1714913
Analysis ID: 1714913_PLM
Date Received: 7/14/2017
Date Reported: 7/17/2017

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Description</th>
<th>Asbestos</th>
<th>Fibrous Components</th>
<th>Non-Fibrous Components</th>
<th>Attributes</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP-16 - A</td>
<td>White Ceramic Flooring and Grout 6x6-Inch</td>
<td>None Detected</td>
<td>100% Other</td>
<td>White Non Fibrous Homogeneous</td>
<td>Dissolved</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ceramic tile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP-16 - B</td>
<td>White Ceramic Flooring and Grout 6x6-Inch</td>
<td>None Detected</td>
<td>100% Other</td>
<td>White Non Fibrous Homogeneous</td>
<td>Crushed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mortar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP-17</td>
<td>Grey/Black Asphalt Roofing Shingle</td>
<td>None Detected</td>
<td>10% Cellulose</td>
<td>90% Other</td>
<td>Gray, Black Non Fibrous Homogeneous</td>
<td>Dissolved</td>
</tr>
</tbody>
</table>

Disclaimer: Due to the nature of the EPA 600 method, asbestos may not be detected in samples containing low levels of asbestos. We strongly recommend that analysis of floor tiles, vermiculites, and/or heterogeneous soil samples be conducted by TEM for confirmation of "None Detected" by PLM. This report relates only to the samples tested and may not be reproduced, except in full, without the written approval of SAI. This report may not be used by the client to claim product endorsement by NVLAP or any other agency of the U.S. government. Analytical uncertainty available upon request. Scientific Analytical Institute participates in the NVLAP Proficiency Testing program. Unless otherwise noted blank sample correction was not performed. Estimated NDL is 0.1%.

Philip Szabo (27)
Approved Signatory

Scientific Analytical Institute, Inc.
4604 Dundas Dr. Greensboro, NC 27407
(336) 292-3888
<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Data 1</th>
<th>Sample Description</th>
<th>Data 2</th>
</tr>
</thead>
<tbody>
<tr>
<td><<</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP-1</td>
<td>1</td>
<td>Textured Ceiling</td>
<td>Basement Shop</td>
</tr>
<tr>
<td>SP-2</td>
<td>1</td>
<td>Textured Ceiling</td>
<td>Basement Hallway</td>
</tr>
<tr>
<td>SP-3</td>
<td>1</td>
<td>Textured Ceiling</td>
<td>Basement Rec Room</td>
</tr>
<tr>
<td>SP-4</td>
<td>2</td>
<td>Brown 12x12-Inch Floor Tile Wood Pattern</td>
<td>Basement Utility Hallway</td>
</tr>
<tr>
<td>SP-5</td>
<td>3</td>
<td>Beige 12x12-Inch Floor Tile</td>
<td>Basement Bathroom</td>
</tr>
<tr>
<td>SP-6</td>
<td>4</td>
<td>Insulation Sleeve on Wood Stove Flue</td>
<td>Basement Laundry Rm</td>
</tr>
<tr>
<td>SP-7</td>
<td>5</td>
<td>Gypsum Board System and Joint Compound</td>
<td>1st Floor Kitchen Ceiling</td>
</tr>
<tr>
<td>SP-8</td>
<td>5</td>
<td>Gypsum Board System and Joint Compound</td>
<td>1st Floor Family Room Wall</td>
</tr>
<tr>
<td>SP-9</td>
<td>6</td>
<td>12x12-Inch Beige Floor Tile Stone Pattern</td>
<td>1st Floor Rear Closet</td>
</tr>
<tr>
<td>SP-10</td>
<td>5</td>
<td>Gypsum Board System and Joint Compound</td>
<td>2nd Floor SW Bed Rm</td>
</tr>
<tr>
<td>SP-11</td>
<td>7</td>
<td>Pink Ceramic Tile & Grout</td>
<td>2nd Floor Bathroom #2</td>
</tr>
<tr>
<td>SP-12</td>
<td>8</td>
<td>Blue Ceramic Wall and Grout 4x4-Inch</td>
<td>2nd Floor Bathroom #3</td>
</tr>
<tr>
<td>SP-13</td>
<td>9</td>
<td>Blue Ceramic Floor and Grout 1x2-Inch</td>
<td>2nd Floor Bathroom #3</td>
</tr>
<tr>
<td>SP-14</td>
<td>10</td>
<td>Green Asphalt Roofing Shingle and Adhesive</td>
<td>Back Porch Roof</td>
</tr>
<tr>
<td>SP-15</td>
<td>11</td>
<td>Pink Ceramic Flooring and Grout 1x2-Inch</td>
<td>1st Floor Bathroom 4</td>
</tr>
<tr>
<td>SP-16</td>
<td>12</td>
<td>White Ceramic Flooring and Grout 6x6-Inch</td>
<td>1st Floor Kitchen</td>
</tr>
<tr>
<td>SP-17</td>
<td>13</td>
<td>Grey/Black Asphalt Roofing Shingle</td>
<td>Roof of Shed- Same as Main Roof</td>
</tr>
<tr>
<td>>></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Relinquished By: William R. Warfel 7/13/17

Accepted ✅

Received By: [Signature] 7/14 8:30 AM
APPENDIX D

BEC STAFF QUALIFICATIONS
Asbestos License

Derrick Klein
Name

Signature

Inspector Review
Course Title

Course Date: 03/10/2017
Exp Date: 03/10/2018
Exam Date: 06/15/2017

17016511

STATE OF MARYLAND
July 26, 2017

ACM SERVICES, INC.
12022 Parklaw Hill Drive
Rockville, Maryland 20852
dale@acmservices.com

ATTENTION: Mr. Dale McGuire
Vice President of Operations

REFERENCE: Mold Evaluation Assessment
8712 2nd Avenue, Silver Spring, Maryland 20910

Mr. McGuire:

BOGGS ENVIRONMENTAL CONSULTANTS, INC. (BEC) conducted a mold evaluation assessment at the multi-story single family structure located at 8712 2nd Avenue, Silver Spring, Maryland. The investigative fieldwork was performed on July 13, 2017. The evaluation was requested to determine the extent of microbial infestation within the residence. The following sections provide field observations, sampling methodologies, and findings.

SECTION 1.0 - FIELD OBSERVATIONS

BEC conducted the assessment on July 13, 2017. BEC industrial hygienists, Richard Robinson and William Warfel met at 8712 2nd Avenue, Silver Spring, Maryland, herein referred as the subject site. BEC was informed by the owner the subject site had been vacant for seven plus years. BEC observed damaged building components adjacent to three of the bathrooms. Based on the occupancy status and these conditions, BEC reasonably assumed the residence was not properly “winterized” causing plumbing fixtures to fail during cooler seasons, exposing building construction materials to moisture for long periods of time.

Section 1.1- Observations

BEC conducted visual observations for the presence of mold on surfaces throughout all interior areas of the residence. Visible mold was observed on the walls, ceilings, floors, insulation, carpeting, framing elements and millwork. In addition, dusty conditions were observed inside the HVAC ductwork. Photographs taken during observations and sampling are contained in Attachment A.

Section 1.2 - Temperature & Relative Humidity

BEC measured ambient temperature (°F) and relative humidity levels (%RH) using a Supco DSP 1000 hand-held direct-reading instrument. Temperature and relative humidity readings were collected within each level of the residence as well as an exterior location outside of the building. Temperatures within the interior areas of concern ranged from 79° to 84°F. Relative humidity within the interior areas of concern ranged from 62% to 70%. Exterior conditions on the day of the assessment were 90 °F and 63% RH. Temperature and RH levels are recorded in the Air Sampling Log included in the field notes in Attachment B.

BEC advises, based upon review of the American Society of Heating, Refrigerating and Air - Conditioning Engineers, Inc. (ASHRAE) standard “Thermal Environmental Conditions for Human Occupancy” (#55-2004), that the acceptable indoor temperature recommended range during the summer/transitional season is 73 °F – 79 °F with relative humidity between 30% - 60%. These recommended values are considered acceptable operative temperature and humidity for persons wearing typical light clothing and engaged in light work activity, such as in a typical office environment. Relative humidity greater than 60% may result in the condensing of water vapor onto surfaces with potential fungal growth on those (wet) surfaces. Relative humidity below 30% may cause drying of the skin, throat, and eyes.
Section 2.0 – Viable Fungal Sampling

Section 2.1 Viable Fungal Air Sampling

BEC collected environmental air samples via high volume air sampling pumps (SAS Microbial Air Sampler Super 100) that draws air through a particle separator sieve and impacts airborne particulates on a nutrient-rich culturing media plate (malt extract agar) for transfer, culture, and identification of fungal organisms. Viable fungal air samples were collected within four areas at the interior and an exterior location outside of the building (outside comparison sample).

The sampling pump was factory calibrated to collect one hundred fifty (150) liters of air for each individual sample collected. Additionally, BEC conducted a thorough cleaning of the instrument with an alcohol swab prior to collection of each individual sample. Upon the collection of each sample, the culture plate was covered, sealed, placed in a cooler with ice, and delivered to Aerobiology Laboratory Associates of Dulles, Virginia. The samples were hand delivered with a chain of custody to Aerobiology Laboratory Associates (no relation to Aerobiological Solutions, Inc.) for fungal count by Method Test: 1030, Fungal Count w/Complete Genius ID: SOP 3.2 with our request for a five (5) to ten (10) business day turnaround time upon laboratory receipt. Aerobiology is an American Industrial Hygiene Association accredited laboratory, certified as proficient in environmental microbiological analysis (EMPAT #103005). BEC received the report from Aerobiology on July 20, 2017. Table 1 below summarizes the results of the viable fungal air sampling.

TABLE 1: VIABLE FUNGAL AIR SAMPLING RESULTS

<table>
<thead>
<tr>
<th>Site</th>
<th>Sample Location</th>
<th>Spore Type</th>
<th>Count</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIC-1 Exterior Front Porch</td>
<td>Arthropore-former</td>
<td>1</td>
<td>7</td>
<td>317</td>
</tr>
<tr>
<td></td>
<td>Aspergillus niger</td>
<td>5</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aspergillus species</td>
<td>5</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cladosporium species</td>
<td>28</td>
<td>187</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Penicillium species</td>
<td>6</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>MIC-2 Basement Shop</td>
<td>Alternaria species</td>
<td>1</td>
<td>7</td>
<td>1,342</td>
</tr>
<tr>
<td></td>
<td>Arthropore-former</td>
<td>1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aspergillus species</td>
<td>50</td>
<td>333</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cladosporium species</td>
<td>7</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Curvularia species</td>
<td>2</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Penicillium species</td>
<td>100</td>
<td>667</td>
<td></td>
</tr>
<tr>
<td>MIC-3 Basement Rec Room</td>
<td>Aspergillus species</td>
<td>30</td>
<td>200</td>
<td>602</td>
</tr>
<tr>
<td></td>
<td>Cladosporium species</td>
<td>6</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Curvularia species</td>
<td>2</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mucor species</td>
<td>1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-sporulating colonies</td>
<td>3</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Penicillium species</td>
<td>41</td>
<td>273</td>
<td></td>
</tr>
<tr>
<td>MIC-4 1st Floor Kitchen</td>
<td>Aspergillus niger</td>
<td>2</td>
<td>13</td>
<td>471</td>
</tr>
<tr>
<td></td>
<td>Aspergillus species</td>
<td>11</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cladosporium species</td>
<td>9</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Penicillium species</td>
<td>42</td>
<td>280</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Syncephalastrum species</td>
<td>1</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>
SECTION 2.0 — Viable Fungal Sampling

Section 2.1 Viable Fungal Air Sampling

<table>
<thead>
<tr>
<th>Location</th>
<th>Viable Fungal Air Sampling Results</th>
<th>Total Positive Hole Corrected CFU/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIC-5 2nd Floor Top of Stairs (Area of Concern)</td>
<td>Arthrospore-former</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Aspergillus niger</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Aspergillus ochraceus</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Aspergillus species</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Chaetomium species</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Cladosporium species</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Penicillium species</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Pithomyces species</td>
<td>1</td>
</tr>
</tbody>
</table>

CFU/m² = Colony Forming Units/Cubic Meter

*Total Positive Hole Corrected - The positive-hole correction factor is a statistical tool which calculates a probable count from the raw count, taking into consideration that multiple particles can impact on the same hole; For this reason the sum of the calculated counts may be less than the positive hole corrected total.

In order for mold to grow in any environment, they need a food source, moisture, proper temperature and humidity, and a source of light. There will always be some fungi in any indoor environment, due to a variety of reasons, including traffic in and out of a building and air infiltration through doors, windows and the building’s HVAC system. The primary factor that can be easily controlled in any building is moisture. As such, indoor fungal investigations typically focus on sources of water loss inside the building (e.g., from plumbing and operational processes), and sources of water intrusion from outside the building (e.g., roof/window leaks).

The intent of the fungal air sampling was to conduct a screening of the potential presence and concentration of airborne fungal spores as directed by the owner. Based upon recognized industry standards, the accepted method for interpreting laboratory fungal spores analytical data and rendering judgments regarding mold-influenced degraded indoor air quality involves comparing the fungal spore species and concentrations detected at interior building areas to exterior ambient (background) levels and/or interior control areas/rooms. Specifically, in buildings without “mold problems”, the qualitative diversity (types) of airborne fungal spores identified at interior and exterior areas should be similar. Conversely, the dominating presence of one or two species of fungal spores identified at interior areas and the absence of the same species at exterior areas may indicate a moisture problem and degraded air quality. Additionally, the consistent presence of certain fungi such as Stachybotrys, Aspergillus, or various Penicillium species greater than exterior concentrations may indicate the occurrence of a moisture problem and a potential atypical mold presence at the interior of a building. Fungi species present in the general exterior ambient environment are typically found within buildings at levels ranging from approximately ten (10) to fifty (50) percent of their levels in the exterior ambient air (reflects filtering of the air by the building’s HVAC system). It should be noted that fungal air sampling is qualitative only, due to the sample collection time (five minutes) and potential influences that can change airborne spore concentration over short period of times.

ENVIRONMENTAL SCIENCE, ENGINEERING & INDUSTRIAL HYGIENE SERVICES
SECTION 3.0 – FINDINGS & CONCLUSIONS

Section 2.1 Viable Fungal Air Sampling

As indicated by the data in Table 1, concentrations in the five locations of concern ranged from 399 to 1,429 colony forming units per cubic meter of air (CFU/m³), while the exterior concentration was 317 CFU/m³. The most common species found in the outdoor sample was various Cladosporium species, while the most common species found in the areas of concern was Penicillium species. Cladosporium is the most common mold type in the outdoor environment; it enters the indoor environment through occupant travel and through the introduction of fresh air into the air handling system. Penicillium and Aspergillus molds are found in the outdoor and indoor environment. The consistent presence of certain fungi, such as Aspergillus or various Penicillium species, at greater than exterior concentrations may indicate a moisture problem and a potential atypical mold presence at the interior of a building.

SECTION 3.0 – FINDINGS & CONCLUSIONS

Visual Observations:

1. Visible or suspected mold was observed throughout all interior areas. In addition, visible mold growth was observed on a variety readily visible building components including framing elements in addition to dusty conditions observed on and inside the interior of HVAC ductwork.

Air Temperature & Relative Humidity

1. Temperatures within the interior areas of concern ranged from 79°F to 84°F, while relative humidity ranged from 62% to 70%. Exterior conditions on the day of the assessment were 63°F and 90%. Temperatures and relatively humidity were within the ASHRAE standard “Thermal Environmental Conditions for Human Occupancy” (#55-2004) which incorporates an indoor temperature recommended range of 73°F - 79°F during summer/transitional season and 68°F - 74°F during the winter/transitional season, and relative humidity between 30% - 60%.

Viable Fungal Air Sampling

1. The concentrations in the samples collected at the interior were 2x – 3x higher than the exterior sample. The predominant species found in the outdoor sample was various Cladosporium species, while the most common species found at the interior was Penicillium species.

SECTION 4.0 – RECOMMENDATIONS

Based on our onsite assessment, BEC recommends the following:

1. It is BEC opinion, based on visual observations, present day conditions and occupancy within the residence are indicative that preventive maintenance and inspection to govern routine inspection of the building systems has been discontinued for a period of time. In as much, based on the condition of this building, BEC recommends engaging a professional A/E firm to evaluate estimated costs of structural stability, building envelope repair, decontamination and abatement of all porous and non-porous building components and compare to razing of the structure. In the absence of building envelope and mechanical repair, water damage and microbial growth will continue to expand. Furthermore, based on this assessment, BEC caution, in order to confirm all microbial growth has been successfully remediated all building construction materials will need removed down to the slab and exterior perimeter walls to efficiently evaluated all enclosed areas.
SECTION 5.0 LIMITATIONS

BEC advises that only accessible areas were evaluated. Interstitial spaces including ceiling plenums and wall cavities were not inspected. Therefore, BEC does not warrant that that an undisclosed condition of mold growth is not present within these areas. BEC lists a brief synopsis of inherent limitations of this sampling methodology.

1. Sampling is done on a comparative basis where it is assumed that a building that doesn’t exhibit fungi significantly different from the general surrounding environment (outdoor air) is acceptable. Results can not definitively identify “safe” or “acceptable” in the same way that sampling for other regulated airborne contaminants can be compared to for example, OSHA permissible exposure limits or EPA limits for air pollution. There is no jurisdiction at the federal or state level that has established acceptable “exposure” limits for fungi.

2. Mold sampling is generally utilized to provide an index of the operation of a building with regard to its management of moisture/water, since fungi depend upon water and moisture sources within a building to flourish. If in fact the data exhibits significant differences in the indoor airborne fungi, it suggests potential issues with design, construction, and/or management of a building (to include the HVAC system) which are not controlling moisture sufficiently.

3. The technology for fungal sampling only permits short term (i.e., a few minutes) sampling time. The result is that single sample results are extremely variable in both the indoor and outdoor (reference zone) air. The consequence is that many samples have to be collected throughout the same day in both the indoor test environment and outdoor air (with the HVAC operating), and the proper statistics have to be utilized to properly analyze the data to generate scientifically defensible conclusions. This is a substantially more costly undertaking that is generally not embraced.

4. Notwithstanding the collection of mold air samples and their associated data sets, the primary criterion for acceptability remains the absence of A) visible mold growth and B) uncontrolled water/moisture. Both are best assessed by visual inspection and moisture content testing/monitoring, and is the approach that is recommended as it is consistent with guidelines (not regulations) provided by State and Federal regulatory agencies.
If you have any further questions, please do not hesitate to contact us here at the office, at your earliest convenience.

Sincerely,

BOGGS ENVIRONMENTAL CONSULTANTS, INC.

Fieldwork Conducted By:

William R. Warfel
Principal Environmental Scientist

Richard C. Robinson
Vice President

ATTACHMENTS

Attachment A Site Photographs
Attachment B BEC Field Documentation
Attachment C Aerobiology Laboratory Associates Analytical Reports & Chain of Custodies
8712 2nd Avenue, Silver Spring, Maryland
View of visible mold growth on gypsum board sheeting within the basement. In addition, visible water staining and swelling of the vinyl flooring.

View of visible mold growth on gypsum board sheeting in the basement on the ceiling directly below plumbing on the first floor restroom.
View of surficial mold growth and visible water staining below HVAC return. Based on this condition, it can be reasonably assumed that conditions promoting microbial growth are present within the HVAC ductwork and enclosed areas.
View of visible mold growth directly below second floor bathroom. It is BEC opinion that the plumbing likely ruptured during the cooler seasons.

View of water staining and visible mold growth within the kitchen area.
View of visible mold/mildew on the exterior of the subject site

View of SAS sampler at the interior kitchen sampling location
ATTACHMENT B

BEC FIELD DOCUMENTATION
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Test Code</th>
<th>Sample Location</th>
<th>Total Volume/Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIC-1</td>
<td>1030</td>
<td>Exterior Ambient - Front Porch</td>
<td>150 (c)</td>
</tr>
<tr>
<td>MIC-2</td>
<td>1030</td>
<td>Basement - Shop</td>
<td>150 (c)</td>
</tr>
<tr>
<td>MIC-3</td>
<td>1030</td>
<td>Basement - Rec Room</td>
<td>150 (c)</td>
</tr>
<tr>
<td>MIC-4</td>
<td>1030</td>
<td>1st Floor - Kitchen</td>
<td>150 (c)</td>
</tr>
<tr>
<td>MIC-5</td>
<td>1030</td>
<td>2nd Floor - Top of Stairs</td>
<td>150 (c)</td>
</tr>
</tbody>
</table>

1015 Culture - WATER Legionella
1017 Culture - SWAB Legionella
1010 WATER - Potable - E. coli/total coliforms
1012 SWAB - E. coli/total coliforms
1028 SWAB - Sewage Screen (E. coli/Entero/total coliforms)
2055 WATER - Heterotrophic Plate Count
3001 ASBESTOS - Point count
3002 ASBESTOS - PM Analysis
3003 ASBESTOS - Particle characterization
3004 ASBESTOS - PCM Analysis
CERTIFICATE OF CALIBRATION

NIST*-Traceable Certification for SAS Air Sampler
*National Institute of Standards and Technology

Model: **SUPER" 100** Date: **8-20-16**
Serial No.: **04-C02947** Next Cal. Due: **8-20-17**
Company: **Aerobiology Laboratory Associates**
ID: Unit #5 Checked by: **[Signature]**

<table>
<thead>
<tr>
<th>Temperature, °F:</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barometric Pressure, in. Hg:</td>
<td>29.9</td>
</tr>
<tr>
<td>Temp. and Pressure Correction Factor:</td>
<td>.997</td>
</tr>
<tr>
<td>Anemometer Reading, meters/second:</td>
<td>.285</td>
</tr>
<tr>
<td>Corrected Air Velocity, meters/second:</td>
<td>.285</td>
</tr>
<tr>
<td>Air Flow, liters/minute:</td>
<td>100.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Display Setting (Sample Volume)</th>
<th>Sampling Time (Minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 liters:</td>
<td>1.0 Minutes</td>
</tr>
<tr>
<td>500 liters:</td>
<td>5.0 Minutes</td>
</tr>
<tr>
<td>1000 liters:</td>
<td>10.0 Minutes</td>
</tr>
</tbody>
</table>

Comments:
1. Accuracy = ± 5% Total
2. Calibrated at battery output 9.7 volts
3. Calibrated with contact plate in place.
4. Anemometer serial number 16050014 (see attached certificate of calibration).

JBW & Associates, Inc.
10242 Little Rock Lane
Frederick, Maryland 21702

Bioscience International
Telephone: 301-230-0072
INSPECTION LOG

Date: 7/13/17

Project Number: MO17162

Project Name: ACM - 8712 2nd Ave

Room / Location: Silver Spring, MD

1. Was mold present in the inspected area? No / Yes (If yes please describe in Comments)

2. Moisture Content Readings in room. (4 highest readings)

13.0 11.4 12.6 10.7

3. Any indication of water infiltration? No / Yes (If yes please describe)

4. Dehumidification present? No / Yes

5. HVAC present? No / Yes

Type: Disconnected

Comments:

BEC staff William Wartel & Richard Robinson arrive 10:02

Interior: Vacant 2 story residential home with basement, all utilities disconnected

Basement: Visible mold growth present on multiple locations on drywall, board sheeting at both walls & ceilings. Vinyl flooring shows water damage at least 10% visible mold growth mostly attributable to unconditioned space. Air testing revealed historical leaks. All interior framing and insulation affected.

1st floor: Visible mold growth present with kitchen walls & ceiling indicative of water infiltration at second floor bathroom. Mold present at GBS & framing elements

2nd floor: Small area of visible mold in bathroom. Given occupancy of house all indications home was reze with water-need causing plumbing to burst at interior enclosed locations.

Exterior: Visible mildew & mold growth on vinyl siding, wood is deteriorated where exposed

Environmental Technician

7/13/17

Date
INSPECTION LOG

Date: 7/13/17

Project Number: MO17/612

Project Name: Ann 8712 2nd Ave

Room / Location: Silver Spring, MD

1. Was mold present in the inspected area? No / Yes (If yes please describe in Comments)

2. Moisture Content Readings in room. (4 highest readings)

| 13.0 | 11.4 | 12.6 | 10.9 |

3. Any indication of water infiltration? No / Yes (If yes please describe)

4. Dehumidification present? No / Yes
 Type / Model Number

5. HVAC present? No / Yes
 Type / Disconnect

Comments:

William Wardell prepares SAS AutoSampler for the collection of viable microbial samples. (1) will be collected at the exterior (2), basement and (1) each at 1st & 2nd floors. (10) samples complete. 1202 BCC offsite.

Environmental Technician

Date 7/13/17

55
<table>
<thead>
<tr>
<th>Sample Location</th>
<th>Sample Description</th>
<th>Total Volume l/min</th>
<th>Final Volume l/min</th>
<th>RH%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mic-1</td>
<td>Exterior Fount Ponds</td>
<td>1.04</td>
<td>1.05</td>
<td>150</td>
</tr>
<tr>
<td>Mic-3</td>
<td>Basement, Rec Room</td>
<td>1.03</td>
<td>1.05</td>
<td>150</td>
</tr>
<tr>
<td>Mic-4</td>
<td>1st Floor Kitchen</td>
<td>1.02</td>
<td>1.05</td>
<td>150</td>
</tr>
<tr>
<td>Mic-5</td>
<td>2nd Floor Top of Stairs</td>
<td>1.01</td>
<td>1.05</td>
<td>150</td>
</tr>
</tbody>
</table>

Date: 7/13/12

Signature: [Signature]

Comments: [Blank]
ATTACHMENT C

AEROBIOLOGY LABORATORY ASSOCIATES ANALYTICAL REPORTS & CHAIN OF CUSTODIES
Certificate of Analysis

AIHA-LAP EMLAP# 102977

Boggs Environmental Consultants
1 College Ave
Frederick, Maryland 21701
Att: Mark Boggs
Project: PO #M017162 / 87112 2nd Ave. Silver Spring, MD
Condition of Sample(s) Upon Receipt: Acceptable
Date Collected: 07/13/2017
Date Received: 07/13/2017
Date Analyzed: 07/19/2017
Date Reported: 07/20/2017
Project ID: 17021877

Client Sample #: MIC-1

- **Sample Location:** Exterior Ambient - Front Porch
- **Test:** 1030, Fungal Count w/ Complete Genus ID: SOP 3.2
- **Positive Hole Corrected Result:** 317 CFU/m³

<table>
<thead>
<tr>
<th>Organism(s) Isolated</th>
<th>Raw Count</th>
<th>CFU/m³</th>
<th>% Total</th>
<th>MRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspergillus niger</td>
<td>5</td>
<td>33</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>Aspergillus species</td>
<td>5</td>
<td>33</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>Cladosporium species</td>
<td>28</td>
<td>187</td>
<td>62</td>
<td>7</td>
</tr>
<tr>
<td>Penicillium species</td>
<td>6</td>
<td>40</td>
<td>13</td>
<td>7</td>
</tr>
</tbody>
</table>

45
300
~100%

Client Sample #: MIC-2

- **Sample Location:** Basement Shop
- **Test:** 1030, Fungal Count w/ Complete Genus ID: SOP 3.2
- **Positive Hole Corrected Result:** 1342 CFU/m³

<table>
<thead>
<tr>
<th>Organism(s) Isolated</th>
<th>Raw Count</th>
<th>CFU/m³</th>
<th>% Total</th>
<th>MRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternaria species</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Arthrospore-former</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Aspergillus species</td>
<td>50</td>
<td>333</td>
<td>31</td>
<td>7</td>
</tr>
<tr>
<td>Cladosporium species</td>
<td>7</td>
<td>47</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Curvularia species</td>
<td>2</td>
<td>13</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Penicillium species</td>
<td>100</td>
<td>667</td>
<td>62</td>
<td>7</td>
</tr>
</tbody>
</table>

161
1074
~100%

Client Sample #: MIC-3

- **Sample Location:** Basement Rec Room
- **Test:** 1030, Fungal Count w/ Complete Genus ID: SOP 3.2
- **Positive Hole Corrected Result:** 602 CFU/m³

<table>
<thead>
<tr>
<th>Organism(s) Isolated</th>
<th>Raw Count</th>
<th>CFU/m³</th>
<th>% Total</th>
<th>MRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspergillus species</td>
<td>30</td>
<td>200</td>
<td>36</td>
<td>7</td>
</tr>
<tr>
<td>Cladosporium species</td>
<td>6</td>
<td>40</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Curvularia species</td>
<td>2</td>
<td>13</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Mucor species</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Non-sporulating colonies</td>
<td>3</td>
<td>20</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Penicillium species</td>
<td>41</td>
<td>273</td>
<td>49</td>
<td>7</td>
</tr>
</tbody>
</table>

83
553
~100%
Client Sample #: MIC-4

Sample Location: 1st Floor Kitchen
Test: 1030, Fungal Count w/ Complete Genus ID: SOP 3.2
Positive Hole Corrected Result: 471 CFU/m³

<table>
<thead>
<tr>
<th>Organism(s) Isolated</th>
<th>Raw Count</th>
<th>CFU/m³</th>
<th>% Total</th>
<th>MRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspergillus niger</td>
<td>2</td>
<td>13</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Aspergillus species</td>
<td>11</td>
<td>73</td>
<td>17</td>
<td>7</td>
</tr>
<tr>
<td>Cladosporium species</td>
<td>9</td>
<td>60</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>Penicillium species</td>
<td>42</td>
<td>280</td>
<td>65</td>
<td>7</td>
</tr>
<tr>
<td>Syncephalastrum species</td>
<td>1</td>
<td>7</td>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

65 433 ~100%

Client Sample #: MIC-5

Sample Location: 2nd Floor Top of Stairs
Test: 1030, Fungal Count w/ Complete Genus ID: SOP 3.2
Positive Hole Corrected Result: 399 CFU/m³

<table>
<thead>
<tr>
<th>Organism(s) Isolated</th>
<th>Raw Count</th>
<th>CFU/m³</th>
<th>% Total</th>
<th>MRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arthrospore-former</td>
<td>8</td>
<td>53</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>Aspergillus niger</td>
<td>1</td>
<td>7</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Aspergillus ochraceus</td>
<td>1</td>
<td>7</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Aspergillus species</td>
<td>1</td>
<td>7</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Chaetomium species</td>
<td>1</td>
<td>7</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Cladosporium species</td>
<td>33</td>
<td>220</td>
<td>59</td>
<td>7</td>
</tr>
<tr>
<td>Penicillium species</td>
<td>10</td>
<td>67</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>Pithomyces species</td>
<td>1</td>
<td>7</td>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

56 375 ~100%
Footnotes and Additional Report Information

Debris Rating Table

<table>
<thead>
<tr>
<th></th>
<th>Minimal (<5%) particulate present</th>
<th>Reported values are minimally affected by particulate load.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5% to 25% of the trace occluded with particulate</td>
<td>Negative bias is expected. The degree of bias increases directly with the percent of the trace that is occluded.</td>
</tr>
<tr>
<td>3</td>
<td>26% to 75% of the trace occluded with particulate</td>
<td>Negative bias is expected. The degree of bias increases directly with the percent of the trace that is occluded.</td>
</tr>
<tr>
<td>4</td>
<td>76% to 90% of the trace occluded with particulate</td>
<td>Negative bias is expected. The degree of bias increases directly with the percent of the trace that is occluded.</td>
</tr>
<tr>
<td>5</td>
<td>Greater than 90% of the trace occluded with particulate</td>
<td>Quantification not possible due to large negative bias. A new sample should be collected at a shorter time interval or other measures taken to reduce particulate load.</td>
</tr>
</tbody>
</table>

1. Penicillium/Aspergillus group spores are characterized by their small size, round to ovoid shape, being unicellular, and usually colorless to lightly pigmented. There are numerous genera of fungi whose spore morphology is similar to that of the Penicillium/Aspergillus type. Two common examples would be Paecilomyces and Acremonium. Although the majority of spores placed in this group are Penicillium, Aspergillus, or a combination of both. Keep in mind that these are not the only two possibilities.

2. Ascospores are sexually produced fungal spores formed within an ascus. An ascus is a sac-like structure designed to discharge the ascospores into the environment, e.g. Ascoconidium.

3. Basidiospores are typically blown indoors from outdoors and rarely have an indoor source. However, in certain situations a high basidiospore count indoors may be indicative of a wood decay problem or wet soil.

4. The colorless group contains colorless spores which were unidentifiable to a specific genus. Examples of this group include Acremonium, Aphanocladium, Syncystopus, Chrysosporium, Enygodontium microcondis, yeast, some arthropores, as well as many others.

5. Hyphae are the vegetative mode of fungi. Hyphal elements are fragments of individual hyphae. They can break apart and become airborne much like spores and are potentially allergenic. A mass of hyphal elements is termed the mycelium. Hyphae in high concentration may be indicative of colonization.

6. Dash (-) in this report, under raw count column means 'not detected (ND)'; otherwise 'not applicable' (NA).

7. The positive-hole correction factor is a statistical tool which calculates a probable count from the raw count, taking into consideration that multiple particles can impact on the same hole; for this reason the sum of the calculated counts may be less than the positive hole corrected total.

8. Due to rounding totals may not equal 100%.

9. Analytical Sensitivity for each spores is different for Non-viable sample when the spores are read at different percentage. Analytical Sensitivity is calculated as spfm^3 divided by raw count. spfm^3 = raw counts x (100 % read) x (1000/sample volume). If Analytical Sensitivity is 13 spfm^3 at 100% read, Analytical Sensitivity at 50% read would be 27 spfm^3, which is 2 times higher. Analytical Sensitivity provided on the report is based on an assumed 100% of the trace being analyzed.

10. Minimum Reporting Limits (MRL) for BULKS, DUSTS, SWABS, and WATER samples are a calculation based on the sample size and the dilution plate on which the organism was counted. Results are a compilation of counts taken from multiple dilutions and multiple media. This means that every genus of fungi or bacteria recovered can be counted on the plate on which it is best represented.

11. If the final quantitative result is corrected for contamination based on the blank, the blank correction is stated in the sample comments section of the report.

12. Analysis conducted on non-viable spore traps is completed using Indoor Environmental Standards Organization (IESO) Standard 2120.

13. The results in this report are related to this project and these samples only.

14. For samples with an air volume of < 100L, the number of significant figures in the result should be considered (2) two. For samples with air volumes between 100-999L, the number of significant figures in the result should considered (3) three. For example, a sample with a result of 55,443 spfm^3 from a 75L sample using significant figures should be considered 55,000. The same result of 55,443 from a 150L sample using significant figures should be considered 55,400 spfm^3.

15. If the In/Out ratio is greater than 100 times it is indicated >100/1, rather than showing the real value.

Terminology Used in Direct Exam Reporting

Conidiophores are a type of modified hyphae from which spores are born. When seen on a surface sample in moderate to numerous concentrations they may be indicative of fungal growth.

Suzanne S. Elevins, B.S., SM (ASCP)
Laboratory Director
Sample Location Table

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Test Code</th>
<th>Sample Location</th>
<th>Total Volume/Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIC-1</td>
<td>1030</td>
<td>Exterior Ambient - Front Porch</td>
<td>150 (c)</td>
</tr>
<tr>
<td>MIC-2</td>
<td>1030</td>
<td>Basement Shop</td>
<td>150 (c)</td>
</tr>
<tr>
<td>MIC-3</td>
<td>1030</td>
<td>Basement Rec Room</td>
<td>150 (c)</td>
</tr>
<tr>
<td>MIC-4</td>
<td>1030</td>
<td>1st Floor Kitchen</td>
<td>150 (c)</td>
</tr>
<tr>
<td>MIC-5</td>
<td>1030</td>
<td>2nd Floor Top of Stairs</td>
<td>150 (c)</td>
</tr>
</tbody>
</table>

- Direct, Non-viable Spore Trap
- Direct, Qualitative - Swab/Tape
- Direct, Qualitative - Bulk
- AIR Culture - Bacterial Count w/ ID's
- AIR Culture - Fungal Count w/ ID's
- SWAB Culture - Bacterial Count w/ ID's
- SWAB Culture - Fungal Count w/ ID's
- BULK Culture - Bacterial Count w/ ID's
- BULK Culture - Fungal Count w/ ID's
- WATER Culture - Bacterial Count w/ ID's
- WATER - Heterotrophic Plate Count
- SWAB - E. coli/total coliforms
- SWAB - E. coli/total coliforms
- SWAB - Sewage Screen (E. coli/Enteric fecal coliforms)
- ASBESTOS - Point count
- ASBESTOS - PLM Analysis
- ASBESTOS - Particle characterization
- ASBESTOS - PCM Analysis

Washington, D.C. Atlanta, GA Denver, CO Phoenix, AZ Cherry Hill, NJ Los Angeles, CA
(877) 548-9150 (770) 647-2828 (303) 232-3746 (602) 441-3700 (855) 486-1177 (714) 895-8401

Revision 11
FIRST AMENDMENT
TO
AGREEMENT FOR SALE AND PURCHASE
OF
8712 SECOND AVENUE, SILVER SPRING, MARYLAND

This FIRST AMENDMENT TO AGREEMENT FOR SALE AND PURCHASE OF 8712 SECOND AVENUE, SILVER SPRING, MARYLAND (hereinafter “First Amendment to Agreement”), is made and shall be effective as of the 3rd day of July, 2017, by and between 8712 SECOND AVENUE HOME PARCEL, LLC (hereinafter “Seller”), a Maryland limited liability company, and WEXFORD HOMES, LLC (hereinafter “Purchaser”), a Virginia limited liability company.

WITNESSETH:

WHEREAS, Seller is the owner of certain real property (hereinafter the “Property”), located at 8712 Second Avenue, in Silver Spring, Maryland, more specifically described in Attachment “A” hereto, consisting of approximately 12,315 square feet of land, more or less, on which presently exist an unoccupied single family home and detached garage both of uncertain and unwarranted condition;

WHEREAS, on June 13, 2017, Seller and Purchaser entered into a certain “Agreement for Sale and Purchase of 8712 Second Avenue, Silver Spring, Maryland” (hereinafter the “June 13, 2017 Agreement”), containing a ten-day “Study Period” during which Purchaser had the right to cancel and declare the Agreement null and void, which Purchaser exercised on June 22, 2017; and

WHEREAS, Seller still desires to sell and Purchaser still desires to purchase the Property, on the terms and conditions agreed upon in the June 13, 2017 Agreement, incorporated herein in its entirety, modified and amended, however, as expressly set forth below.

NOW, THEREFORE, in consideration of the mutual promises contained herein and in the June 13, 2017 Agreement, and other good and sufficient consideration, the receipt and adequacy of which is hereby acknowledged, the parties hereto agree to amend and modify the June 13, 2017 Agreement as follows:

1. PURCHASE PRICE. The purchase price shall be FOUR HUNDRED FIFTY THOUSAND ($450,000) DOLLARS, to be paid by Purchaser, as follows:
(a) an initial deposit (hereinafter “Initial Deposit”), by check, subject to collection, to be made on the effective date of this Agreement, in the amount of THIRTY THOUSAND ($30,000) DOLLARS, payable to Maxwell Barke & Zuckerman LLC (hereinafter “MBZ LLC”), to be held in escrow in the law firm’s attorney IOLTA trust account, with the understanding that neither Purchaser nor Seller will be entitled to receive any interest generated relating to said Initial Deposit; and

(b) the purchase price, less the Initial Deposit actually remitted to Seller at settlement, shall be paid in full by Purchaser, in cash, wired funds, bank check, or certified check.

2. SETTLEMENT. Settlement shall take place, the purchase price paid, and insurable title passed, on the first business day falling on or after the fifteenth (15th) day following approval and issuance to Purchaser of an Historic Area Work Permit (hereinafter “HAWP”) to demolish the structures (residence and garage) presently located on the Property, and construct a suitable new residence, as more fully addressed below, or earlier if mutually agreed to in writing by the parties. If, however, approval and issuance of a HAWP does not occur on or before January 31, 2018, either party shall have the unconditional right to cancel the sale and purchase and declare the June 13, 2017 Agreement and this First Amendment to Agreement null and void, thus entitling Purchaser to promptly receive its Initial Deposit back in full, provided that Purchaser has not materially defaulted in its obligation to file and diligently pursue the HAWP application process to a conclusion.

3. HAWP APPLICATION. The parties understand that, because the Property is located within an Historic District, demolition of existing structures and new construction on the Property require the advance approval of the Montgomery County Historic Preservation Commission (hereinafter “HPC”). The HPC reviews proposals for demolition and new construction through the mechanism of the HAWP application process. Purchaser agrees to use its best efforts to obtain a HAWP allowing demolition of existing structures and construction of a suitable new residence on the Property, as determined by Purchaser, by promptly filing with the Department of Permits and Services, and diligently pursuing to conclusion, at Purchaser’s expense, an application and/or applications for approval for demolition and new construction on the Property. Purchaser acknowledges that the HAWP application process may include, but not be limited to, filing multiple applications, providing documentation pertaining to the need for demolition and new construction, as well as sketches and/or renderings of proposed designs, and attendance and presentations at public hearings, all of which Purchaser is prepared to and agrees to do and pursue in using its best efforts to obtain a HAWP allowing demolition of existing structures and construction of a suitable new residence on the Property. Purchaser also agrees on a timely basis to keep Seller informed of Purchaser’s progress in the HAWP application process, and also to share with Seller, upon Seller’s request, documentation and information corroborating Purchaser’s efforts in that
regard. Finally, Seller agrees to cooperate with Purchaser in the HAWP application process, including allowing access to the Property and executing any documents requiring signature of the owner of the Property.

IN WITNESS WHEREOF, the parties hereto and the escrowee of the Initial Deposit have hereunto set their hands and seals effective as of the date first above written.

SELLER:
8712 SECOND AVENUE
HOME PARCEL, LLC

By

Printed name: James S. Maxwell
Email: maxwell@maxlaw.us
Address: c/o Maxwell Barke & Zuckerman LLC
11 Monroe Place, Suite 806
Rockville, MD 20850

PURCHASER:
WEXFORD HOMES, LLC

By

An authorized member
Printed name: Douglas P. Stein
Email: doug.wexfordhomes@gmail.com
Address: 8720 Woodmont Ave. # 907
Bethesda, MD 20814

ACCEPTED BY ESCROWEE:
MAXWELL BARKE & ZUCKERMAN LLC

By

An authorized member
Printed name: Joel R. Zuckerman
Email: zuckerman@maxlaw.us
Address: 51 Monroe Place, Suite 806
Rockville, MD 20850
ATTACHMENT "A"
Property Description

Lot numbered Seven (7) in Block Numbered
Twelve (12) in subdivision of land in the said county known as
and called "B.F. LEIGHTON'S ADDITION TO WOODSIDE" according to
the plat thereof as recorded in Plat Book A, Plat 25, one of the
Land Records of said Montgomery County.

BEGINNING for the same at a pipe found at the front corner of
Lots Six (6) and Seven (7) and running thence along the dividing
line of Lots Six (6) and Seven (7) South 50° 17' West 105.26
feet, thence running across Lot Seven (7), North 39° 43' West
55.85 feet, thence running across Lot Seven (7) North 50° 17'
East 105.26 feet, thence bearing East and running South 39° 43'
East 55.85 feet to the place of the beginning containing 5,879
square feet.

AND

BEGINNING for the same at the rear common corner
Lots 6, 7, 10 and 11 Block 12, WOODSIDE, a plat thereof recorded
in Plat Book A Plat No. 25; thence running with the common line
of Lots 7 and 10
1. N 40° 00' 00" W - 75.00 feet, thence with the common line of
 Lots 7 and 8
2. N 50° 00' 00" E - 164.20 feet to the front common corner of
 Lots 7 and 8 at Second Avenue, thence with part of Lot 7 and
 Second Avenue
3. S 40° 00' 00" E - 19.15 feet, thence leaving Second Avenue
 and running so as to cross part of Lot 7
4. S 50° 00' 00" W - 105.26 feet, thence
5. S 40° 00' 00" E - 55.85 feet to a point on the common line
 of Lots 6 and 7, thence with the remainder of said lots
6. S 50° 00' 00" W - 58.94 feet to the place of beginning,
 containing 6436 square feet of land.

Being the same property conveyed to 8712 Second Avenue Home
Parcel, LLC by two deeds, namely:

(1) by deed dated May 27, 2016, and recorded among the Land
 Records of Montgomery County, Maryland, in Book 52328, at
 page 176; and

(2) by deed dated April 25, 2017, and recorded in the Land
 Records of Montgomery, Maryland, in Book 54277, at page 334.

Said property having a street address of 8712 Second Avenue,
Silver Spring, Maryland 20910, and a Tax/Parcel ID No. of 13-01090973.