

Public Hearing Draft Limited Amendment to the 1994 Approved and Adopted Clarksburg Master Plan & Hyattstown Special Study Area

to Allow an Exception to the Retail Staging Provisions

May 2011
M Montgomery County Planning Department
M-NCPPC
Montgomery Planning.org

Clarksburg Limited Master Plan Planning Board Worksession April 11, 2013

Agenda

- Introductions
- Land Use and Transportation Considerations
- Recap 10 Mile Creek watershed conditions
- Biological Condition Gradient
- Principles for Protection of Ten Mile Creek
- Refining 1994 Plan Analysis Results
- Determining Alternative Development Scenarios

Key Questions

How do we balance policies that support the 1994 plan vision?

- Clarksburg at a town scale and with a transit orientation
- Protection of natural features
- Importance of I-270 high tech corridor with employment options

How significantly could the watershed be impacted by development?

How well can those impacts be mitigated?

What constitutes an acceptable level of stream quality decline?

What other development options should be considered?

www.montgomeryplanning.org/10milecreek

Policy 1: Town Scale of Development

- Historic district is a key element of the Town Center
- Land use recommendations balance environmental protection and sufficient densities to support transit
- High tech corridor employment at reduced scale
- Defined neighborhoods with a mixture of housing types

Policy 6: Town Center

- Mixed use with transit and pedestrian orientation
- Civic components create focus for public life
- "Main street" treatment for Md 355 protects historic district

Policy 2: Natural Environment

- Ten mile creek has countywide significance
- Public stream valley acquisition to support *Greenways (Policy 3)*
- Development guidelines for impacted streams

Policy 4: Transit System Policy 8: Employment

 In the Town Center, transit availability supports higher residential densities and employment uses at appropriate town scale

Policy 7: Transit/Pedestrian Orientation Policy 5: Hierarchy of Roads and Streets

- Seven neighborhoods with pedestrian focus and connections to transit system
- Clear street hierarchy separates through from local traffic and connect streets within neighborhoods

Community Building

- These policies are the foundation of a clearly defined community with a range of land uses, including *Farmland Preservation (Policy 9)*
- Community building managed by a Staging Plan (Policy 10) to balance provision of civic infrastructure with pace of development

Current Development

Recommended Housing Mix

by Geographic Area

Neighborhood	Detached	Attached	Multi-family	
Town Center	10 percent to 20	30 percent to 50	25 percent to 45	
	percent	percent	percent	
Transit Corridor	5 percent to 10	40 percent to 60	30 percent to 50	
(Transitway)	percent	percent	percent	
Transit Corridor	50 percent to 60	30 percent to 40	5 percent to 10	
(MD 355 Area)	percent	percent	percent	
Newcut Road	45 percent to 55	35 percent to 45	10 percent to 20	
	percent	percent	percent	
Cabin Branch	45 percent to 55	35 percent to 45	10 percent to 20	
	percent	percent	percent	
Ten Mile Creek East	70 percent to 100	0 percent to 30	0 percent	
	percent	percent		

Current Development

Built and Unbuilt Residential

Neighborhood	Totals						
	SFD	SFA	MF	Total	SFD %	SFA %	MF %
Town Center	450	805	359	1,614	0.28	0.50	0.22
Transit Corridor	276	658	194	1,128	0.24	0.58	0.17
Newcut Road	1,905	1,294	1,234	4,433	0.43	0.29	0.28
Cabin Branch	1,036	654	939	2,629	0.39	0.25	0.36
Ten Mile Creek	0	0	0	0	0	0	0
				9,804			

Commercial

- 600,000 sf built since plan approval
- 304,000 sf approved but unbuilt in town center and newcut road

Aile Creek Area Limited Amendment

Rnd 8.2 Forecast: Employment Change (2010 - 2040)

Planning Area	Total 2010	Total 2040	Change	% Change
North Bethesda	60,943	100,867	39,924	65.5%
Rockville	73,595	105,533	31,938	43.4%
Gaithersburg Vicinity	48,885	72,185	23,300	47.7%
Bethesda/Chevy Chase	99,597	122,490	22,893	23.0%
Gaithersburg City	43,351	63,638	20,287	46.8%
Germantown	23,681	43,622	19,941	84.2%
Clarksburg	2,984	13,906	10,922	366.0%
Fairland	16,553	27,436	10,883	65.7%
Silver Spring	33,878	41,101		
Potomac	15,334	21,088		
Kensington/Wheaton	20,681	23,702		
Travilah	4,378	7,028		
Olney	8,775	10,806		
White Oak	15,591	17,052		
Patuxent	2,597	3,772		
Cloverly	2,579	3,117		Dickers on
Upper Rock Creek	11,037	11,434		
Kemp Mill/4 Corners	3,939	4,173	Martin	sburg
Aspen Hill	8,463	8,536		
Takoma Park	5,859	5,926		Poolesville
Bennett	1,228	1,294		
Damascus	1,837	1,898		
Lower Seneca	308	320	Legend	Employment (2010 to 2010)
Darnestown	1,502	1,512		a Employment (2010 to 2040)
Goshen	1,124	1,129	5 - 538	3 0 2 1
Dickerson	616	616	5,754 -	7,223
Martinsburg	100	100	10,883	- 39,924 load
Poolesville	862	862		

Www.montgomerypianning.org/ tormiecreek

Employment Forecast, Montgomery County

Pipeline and Forecasted Employment Estimates by Master Plan Areas

GAITHEAS GAITHERSBURG EAST GAITHERS GAITHERSBURG GERMTOSP GERMANTOWN SECTOR PLAN GERMTOWN GERMANTOWN MASTER PLAN GSENECA GREAT SENECA SCIENCE CORRIDOR MASTER PLAN

NSILSPSP	NORTH AND WEST SILVER SPRING 2000
OLNEY	OLNEY MASTER PLAN
POTOMSUB	POTOMAC SUBREGION 2002
ROCKVLE	ROCKVILLE
SASPASSA	SANDY SPRING ASHTON
SHGRSP	SHADY GROVE SECT OR PLAN
SILSPCBD	SILVER SPRING CBD
SILSPEAS	SILVER SPRING EAST
TWINBROK	TWINBROOK
WHEATNSP10	WHEATON SECTOR PLAN 2010
WHTFLNT	WHITE FLINT SECTOR PLAN
WHTFLNT2	WHITE FLINT SECTOR PLAN PHASE 2
WOODTRI	WOODMONT TRIANGLE AMENDMENT

Forecast Jobs by Master Plan Area

* Only Master Plans with expected growth of over 500 jobs are displayed.

About 50% of all county jobs fall within 1 of 7 industry categories.

	# of		%
Description	Sites	# Jobs	County
Professional, Scientific, and			
Technical Services	6,630	66,611	14.5%
Educational Services	797	33,568	7.3%
Administration of Human Resource			
Programs	27	30,657	6.7%
Administrative and Support			
Services	2,094	28,180	6.2%
Food Services and Drinking Places	1,838	26,458	5.8%
Ambulatory Health Care Services	2,773	23,744	5.2%
Hospitals	42	23,576	5.1%
Totals:	14,201	232,794	50.8%

www.montgomeryplanning.org/10milecreek

Existing Transit Conditions

Orientation

Existing Intersection Conditions

Existing Intersection Levels of Service						
	Intersection	Peak Hour				
		AM		PM		
	MD 121 & I-270 Western Intersection	А	365	А	250	
	I-270 & MD 121 Eastern Intersection	А	609	А	480	
	MD 355 & MD 121	С	1225	С	1150	
	MD 355 & Shawnee Lane	А	750	А	875	
	MD 355 & Stringtown Road	А	914	В	1068	
	Gateway Center Dr. & Stringtown Road	А	667	А	846	

Existing CLV Standard = 1425

Understanding Existing Conditions

Land Use and Land Cover

Community Features Existing Infrastructure Stormwater Management

Natural Features

Hydrology Geomorphology Water Quality Habitat Biology

Water Quality

Ten Mile Creek Existing Conditions

- Reference stream in Montgomery County.
- Overall biological condition is healthy & diverse.
- Sensitive 'indicator' organisms that occur in few other areas
- Part of a small group of high quality watersheds still remaining
- Streams are small and spring fed with cool, clean groundwater.
- Mainstem has high concentrations of interior forest and wetlands.
- No evidence of widespread, long-term channel instability
- Flood flows still naturally access the floodplain.
- Stream bed material is ideal to support a benthic macroinvertebrates
- Slopes are steep and soils are generally rocky, with shallow to moderate depth to bedrock.

Needed a Method that:

- measures degree of fragility/sensitivity
- measures risk of further degradation as well as improvement
- indicates when sites are increasingly at risk but IBI says is still 'good'

BIOLOGICAL CONDITION GRADIENT

Increasing Level of Stress

Location of Samples Assessed

www.montgomeryplanning.org/10milecreek

BIOLOGICAL CONDITION GRADIENT

Natural structural, functional, and taxonomic integrity is preserved

Minimal changes in structure and function

King Spring (invert)

Evident (e.g. measurable) changes in structure, minimal changes in function

Above Old Baltimore Rd (invert/fish) Below Old Baltimore Rd (invert/fish)

Moderate changes in structure & evident changes in function

Biological Condition

ile Creek Area

mited Amendment

Major changes in structure & moderate changes in function

Severe changes in structure & function

Increasing Level of Stress

Macroinvertebrates

- The BCG can be used to:
 - identify high quality waters that may be threatened and require additional protection and
 - Identify waters that show early signs of degradation but where protection or restoration efforts could be most efficient and successful.

Limited Amendment Environmental Impacts from

Development

Forests Provide:

- Carbon sequestration
- Return of water to the air by evapotranspiration
- Release of oxygen to the air
- Habitats
- Terrestrial and aquatic plant and animal communities
- Natural soil structure and biology
- Infiltration of rainwater
- Natural surface and ground water flows
- Moderation of air and water temperature
- Minimal pollution inputs
- Water quality treatment

Limiting Development footprint and Impervious Cover helps to reduce impacts to all of the above, not just infiltration

ESD and Woods in Good Condition

Although ESD is an improvement over conventional stormwater management and can mimic infiltration characteristics of forests, when it comes to providing *all* of the ecological functions and benefits of forests, it is important to keep in mind that:

Environmental Site Design

Woods in Good Condition

Changes in Watersheds Resulting from Development

Development

Method of H&H Analysis

- **XP-SWMM** Dynamic rainfall-runoff modeling package
- "Base Conditions" model scenario
 - Ten Mile Creek study area under existing conditions
- "1994 Master Plan with ESD" model scenario
 - Ten Mile Creek study area after development described in the Master Plan
 - Development implemented with ESD per State and County regulations
 - Construction activities will reduce the infiltration capacity of soil

Micro-Bioretention, Maryland Stormwater Design Manual

How ESD Was Modeled

- Required storage volume computed from Maryland regulations
- Micro-bioretention used as representative practice
- Model Run Presented March 14:
 - Conservative assumptions:
 - ESD practices sized based on Montgomery County minimum requirements (6" ponding)
 - Media partially full from prior rain event
- Additional Model Run:
 - More moderate assumptions:
 - ESD practices sized between County minimum and maximum (8" ponding)
 - Media assumed to be dry, with decaying infiltration of ponded area (more typical of "real" ESD practices)

1-year and 2-year Storms

- The model simulated two storm events:
 - 1-year, 24-hour storm (2.6 in.)
 - 2-year, 24-hour storm (3.2 in.)
 - Both storms modeled with SCS
 Type II distribution

- Why these storms?
 - 1-year storm is design basis for channel protection
 - Natural channels often sized to convey storms in this range.

Change in Volume and Rate Affects the Hydrograph

www.montgomeryplanning.org/10milecreek

Key Metrics

- Total Streamflow Volume
- Peak Streamflow
- Peak Stream Velocity
- Also examine: *duration* elevated flow/velocity.

Example: Sub-basin with Low to Moderate Hydrology Response (LSTM202)

www.montgomeryplanning.org/10milecreek

Example: Sub-basin with Low to Moderate Hydrology Response (LSTM202)

www.montgomeryplanning.org/10milecree Slight volumes variations due to differences in modeling parameters and methods (not predictive of stream response). Volumes= 44.1 acft conservative, 46 ac-ft moderate model run)

Example: Sub-basin with Low to Moderate Hydrology Response (LSTM202)

Example: Sub-basin with Significant Hydrology Response (LSTM110)

www.montgomeryplanning.org/10milecree Slight volumes variations due to differences in modeling parameters and methods (not predictive of stream response). Volumes= 15 ac-ft conservative, 15.9 ac-ft moderate model run)

Example: Sub-basin with Significant Hydrology Response (LSTM110)

1-yr, 24-hr Storm Event **Peak Stream Flow** Master Plan Peak Streamflow = 29.2 ft³/second ("conservative" ESD assumptions) 25 Existing Conditions Peak Streamflow = 20 16.2 ft³/second · 이나 15 Master Plan Peak Streamflow = 15.3 ft³/second 10 (moderate ESD assumptions) 5 16 Wed 15 Tue 17 Thu 18 Fri 19 Sat 20 Sun Jan 2013 Time

Existing Conditions:

- 211 total acres
- 3.4ac imp cover (2%)

1994 Master Plan ESD:

- 31.8 ac Imp cover (15%)
- +80% Increase in Peak Stream Flow (conservative ESD assumptions)
- -6% Decrease in Peak Stream Flow (moderate ESD assumptions)

Example: Sub-basin with Significant Hydrology Response (LSTM110)

- Significant hydrology impacts from increased volumes
 - >800% increase in impervious surface
 - +72 to 83% Increase in Total Stream Volume
- Larger ESD practices may help mitigate peak flows
- But, natural hydrographs are not likely to be replicated due to larger volumes and longer release to stream

Overview of H&H results

Summary of H&H Impacts

- Some Ten Mile Creek sub-basins could experience
 - Lower peak flow due to ESD storage
 - Higher streamflow volume
 - Higher duration of elevated flow
- More vulnerable sub-basins could experience
 - Higher peak flow/velocity
 - Higher streamflow volume
 - Higher duration of elevated flow
 - Geomorphology impacts

Spatial Watershed Analysis

	Score					
Attribute	Present	Absent				
Steep Slopes, >15% – presence/absence	1	0				
Steep Slopes, >25% – presence/absence	1	0				
Erodible Soils – presence/absence	1	0				
Hydric Soils – presence/absence	1	0				
Forest – presence/absence	1	0				
100-Year Floodplain – presence/absence	1	0				
Perennial/Intermittent Streams – presence/absence	1	0				
Ephemeral Channels – presence/absence	1	0				
Wetlands – presence/absence	1	0				
Springs, Seeps, and Pools – presence/absence	1	0				
Maximum Possible Score	10					
Interior Forest – presence/absence	1	0				
Maximum Possible Score	11					

With Interior Forest

With Interior Forest

¹⁰ Mile Creek Limited Amendment

Extent of Limit of Disturbance (LOD) Across the Subwatersheds

Subwatershed	Subwatershed Area (acres)	LOD within Subwatershed (acres)	% of Subwatershed	% of Total LOD
110	211.0	88.1	42%	22%
111	103.5	47.5	46%	12%
112	228.2	21.7	10%	5%
201	610.5	40.8	7%	10%
202	242.9	61.7	25%	15%
203	493.2	-	0%	0%
204	543.6	-	0%	0%
206	370.0	135.9	37%	33%
302	77.3	5.1	7%	1%
303B	117.0	6.6	6%	2%
304	49.0	-	0%	0%
TOTAL	3,046.2	407.4		100%

Interior Forest, Existing

Interior Forest, 1994 Master Plan Scenario

Existing Imperviousness

Legend

Subwatershed Boundaries

Subwatershed Imperviousness

Scenario_1

1994 Master Plan Imperviousness Analysis

Aile Creek Area CSPS Score Change Estimate (CSCE) Model

- Statistical model used in earlier master plans to estimate potential changes in stream biology scores
- Based on changes in impervious cover as an predictive indicator of overall development impacts
- Used to predict changes in stream scores, not actual scores
- Potential score changes combined with actual monitored scores to produce estimated scores under new development
- Model developed using data that reflects pre-ESD standards, and cannot predict score changes using ESD

Application of the CSCE Model in Ten Mile Creek

- Because of lake impacts on fish, stream invertebrate scores the best indicator of TMC stream health
- Cannot currently predict stream biology response to ESD due to lack of ESD watershed monitoring
- Provides estimates of lower endpoints for the range of potential improvements that could result from the same development using ESD and any additional enhancements
- TMC stream biology impacts still expected using ESD, but will less than CSCE estimates.
- Exceeding ESD standards will reduce stream biology impacts even further

Potential Change to Stream Conditions

Subwater- shed ID	1994-2012 BIBI	1994-2012 BIBI Narrative Ranking	95% Confidence Upper Value	95% Confidence Upper Value Narrative Ranking	95% Confidence Lower Value	95% Confidence Lower Value Narrative Ranking		
LSTM 201	31	Good	29	Good	28	Low Good		
LSTM 111	30	Good	24	High Fair	16	Poor		
LSTM 112	30	Good	29	Good	27	Low Good		
LSTM 206	21	Fair	13	Poor	7	Poor		
LSTM 202	30	Good	23	Fair	18	Low Fair		
LSTM 302	35	High Good	32	Good	30	Good		
LSTM 110	35	High Good	29	Good	20	Fair		
LSTM 303B	36	Low Excellent	33	High Good	31	Good		
LSTM 304	34	High Good	31	Good	29	Good		

Potential Change from Existing Conditions

Principles for Protection

- Protecting natural resources
- Minimizing the footprint of development within the watershed
- Protecting the immediate drainage area beyond the stream buffer
- Reforesting farm fields outside of the development footprint to native plant communities
- Reducing the extent of disturbance to stream buffers
- Limiting the total imperviousness in the watershed
- Incorporating higher standards than current regulations for stormwater management
- Retrofitting impervious surfaces that do not currently have stormwater management control

2040 Traffic Conditions 1994 Plan

Limited Amendment 2040 Traffic Conditions High Alternative

Traffic Impacts

Summary CLV Table

Intersection	Existing			2040 No-Build			2040 Build			2040 HI No-Build				2040 HI Build						
	A	M	PM		AM		P	PM A		M	PM		AM		PM		AM		PM	
MD 121 & I-270 Western																				
Intersection	А	365	А	250	В	1125	А	675	В	1125	А	675	В	1125	А	675	В	1125	А	700
I-270 & MD 121 Eastern																				
Intersection	А	609	А	480	С	1213	D	1325	С	1200	D	1325	D	1306	D	1325	D	1306	D	1350
MD 355 & MD 121	С	1225	С	1150	D	1425	F	1850	А	875	F	1800	Е	1525	F	1850	А	950	F	1800
MD 355 & Shawnee Lane	А	750	А	875	В	1083	В	1117	В	1096	В	1142	С	1183	В	1100	С	1196	С	1225
MD 355 & Stringtown																				
Road	А	914	В	1068	F	1719	F	2431	В	1073	Е	1522	F	1970	F	2431	С	1210	F	1657
Gateway Center Dr. &																				
Stringtown Road	А	667	А	846	D	1397	D	1325	Е	1540	Е	1468	F	1721	D	1325	F	1802	F	1870
New Road & Stringtown																				
Road									D	1386	F	1616					D	1445	F	1801

Existing CLV Standard = 1425

Potential Congested Intersections

Potential Scenarios

- East of I-270
 - Review alternatives for 355 Bypass
 - Explore moving fire station to an already disturbed area
 - Establish an impervious cap
 - Changes in land use
- West of I-270
 - Reduce development potential of County property
 - Change development mix to increase resource protection
 - Expand protection areas to protect resources and reduce stream impact and reforest open areas
 - Employ decompaction and increased storage volumes for ESD
 - Establish an 8% impervious cap

Potential Alternatives to Study

Alternatives on County Properties

Principles for Protection

- Protecting natural resources.
- Minimizing the footprint of development within the watershed.
- Protecting the immediate drainage area beyond the stream buffer.
- Reforesting farm fields outside of the development footprint to native plant communities.
- Reducing the extent of disturbance to stream buffers.
- Limiting the total imperviousness in the watershed.
- Incorporating higher standards than current regulations for stormwater management.
- Retrofitting impervious surfaces that do not currently have stormwater management control

Potential Alternatives to Study

Discussion

How do we balance policies that support the 1994 plan vision?

- Clarksburg at a town scale and with a transit orientation
- Protection of natural features
- Importance of I-270 high tech corridor with employment options

How significantly could the watershed be impacted by development?

How well can those impacts be mitigated?

What constitutes an acceptable level of stream quality decline?

What other development options should be considered?