

April 17th, 2013

POINTS FOR CONSIDERATION

- Environmental Site Design is required by law to specifically address the effects of development on Maryland waters
- Data supporting the Biological Condition Gradient within the Pulte property (LSTM110 and 111) is not available
- The use of the Impervious Cover Model is not an appropriate management tool
- Impacts associated with Hydrology and Hydraulics (H&H) are overestimated

Environmental Site Design (ESD)

- Stormwater Management Act (SWMA) of 2007 requires ESD and defines it as:
 - 'using small-scale stormwater management practices, nonstructural techniques, and better site planning to <u>mimic natural hydrologic runoff</u> <u>characteristics</u> and <u>minimizing the impact of land development on water</u> <u>resources</u>' <u>emphasis added</u>

- Development of ESD requirements was a multi-year process led by Maryland Department of the Environment (MDE)
- In 2010, Montgomery County DEP conducted a study to determine how to implement ESD to the Maximum Extent Practicable (MEP)
- The 2007 SWMA represents a significant improvement over historical control measures.

EXAMPLES OF ESD APPLICATIONS

- State Highway ICC project
 - 70 individual bioswales installed in Paint Branch SPA at 21 sites
 - Studied systems have met or exceeded design goals with respect to retention and temperature management

LSTM BIOLOGICAL CONDITION GRADIENT

- The data utilized in deriving the BCG have not been provided and the conclusions have not been peer reviewed.
- There is no record of fisheries surveys within the Pulte development areas 1994 to 2010.

THE IMPERVIOUS COVER MODEL (ICM) IS NOT AN APPROPRIATE MANAGEMENT TOOL FOR TEN MILE CREEK

- Attempts to correlate effect levels

 / stream quality with varying
 degrees of watershed
 imperviousness
- Does not consider the effect of Environmental Site Design practices

Relationship between Total Impervious Cover and Stream Quality - Modified From Schueler et al. (2009)

WATERSHED EAST OF I-270, HISTORIC DISTRICT

WHY DOESN'T THE ICM APPLY TO SITES DEVELOPED USING ESD?

- The ICM was developed using data from traditional, non-ESD watersheds
- Total impervious cover is rarely the most important or only predictor of stream health
- Factors include:
 - Location and Connectivity of Impervious Areas
 - Number of Road/Stream Crossings
 - Percent of Stream Buffer in Forest Cover
- Ten Mile Creek by Pulte Homes will
 - Disconnect SW from direct discharge to stream
 - Requires only 1 stream utility crossing
 - Provide 100% of riparian area as forest

Staff's Summary and Conclusions are inconsistent

NewFields

Table 2. Summary of 1994 Master Plan Scenario Analysis

	Watershed Indicator					
Subwatershed	Hydrology	Geomorphology (inferred from H&H Analysis)	Pollutant Loading	Natural Resource Disturbance (per Spatial Analysis)	OVERALL	
LSTM110	Significant	Significant	Low	Moderate	Significant	
LSTM111	Significant	Significant	N/A	Low to Moderate	Significant to Moderate	
LSTM112	Low	Low	N/A	Low	Low	
LSTM201	Low	Low	Low	Low to Moderate	Low to Moderate	
LSTM202	Moderate	Moderate	N/A	Low to Moderate	Moderate	
LSTM203	N/A	N/A	N/A	N/A	N/A	
LSTM204	N/A	N/A	N/A	N/A	N/A	
LSTM206	Low to Moderate	Low to Moderate	Significant	Significant	Moderate	
LSTM302	Low	Low	Moderate to Significant	Low	Moderate	
LSTM303B	Moderate	Moderate	Low to Moderate	Low	Moderate	
LSTM304	Low to Moderate	Low to Moderate	N/A	N/A	Low to Moderate	

ł

STAFF'S SUMMARY AND CONCLUSIONS ARE INCONSISTENT

	Wetenhad Indicator					
Subwatershed	Hydrology	Geomorphology (inferred from H&H Analysis)	Pollutant	Natural Resource Disturbance (per Spatial Analysis)	OV/FRAIL	
LSTM110	Significant	Significant	Low	Moderate	Significant	
LSTM111	Significant	Significant	N/A	Low to Moderate	Significant to Moderate	
LSTM112	Low	Low	N/A	Low	Low	
LSTM201	Low	Low	Low	Low to Moderate	Low to Moderate	
LSTM202	Moderate	Moderate	N/A	Low to Moderate	Moderate	
LSTM203	N/A	N/A	N/A	N/A	N/A	
LSTM204	N/A	N/A	N/A	N/A	N/A	
LSTM206	Low to Moderate	Low to Moderate	Significant	Significant	Moderate	
LSTM302	Low	Low	Moderate to Significant	Low	Moderate	
LSTM303B	Moderate	Moderate	Low to Moderate	Low	Moderate	
LSTM304	Low to Moderate	Low to Moderate	N/A	N/A	Low to Moderate	

STAFF'S SUMMARY AND CONCLUSIONS ARE **INCONSISTENT**

Table 2. Summary of 1994 Master Plan Scenario Analysis						
	Watershed Indicator					
Subwatershed	Hydrology	Geomorphology (inferred from H&H Analysis)	Pollutant Loading	Natural Resource Disturbance (per Spatial Analysis)	OVERALL	
LSTM110	Significant	Significant	Low	Moderate	Significant	
LSTM111	Significant	Significant	N/A	Low to Moderate	Significant to Moderate	
LSTM112	Low	Low	N/A	Low	Low	
LSTM201	Low	Low	Low	Low to Moderate	Low to Moderate	
LSTM202	Moderate	Moderate	N/A	Low to Moderate	Moderate	
LSTM203	N/A	N/A	N/A	N/A	N/A	
LSTM204	N/A	N/A	N/A	N/A	N/A	
LSTM206	Low to Moderate	Low to Moderate	Significant	Significant	Moderate	
LSTM302	Low	Low	Moderate to Significant	Low	Moderate	
LSTM303B	Moderate	Moderate	Low to Moderate	Low	Moderate	
LSTM304	Low to Moderate	Low to Moderate	N/A	N/A	Low to Moderate	

GEOMORPHOLOGY IMPACTS CANNOT BE INFERRED FROM H&H

- The determination of the potential for geomorphological changes requires site specific and extensive data analysis.
- The assignment of 'significant' geomorphic changes without these calculations is inappropriate and not based on sound science.

Hydrologic & Hydraulic (H&H) Modeling concerns

- Concerns with Both Models presented by MNCPPC environmental consultants:
 - Unclear as to sizing and total volume assumed within each model
 - Model 1 assumption that soil media will be fully saturated represents an infrequent scenario. Does not represent a typical ESD hydrologic response.
 - Model 2 does not include effects of groundwater infiltration amongst ESD devices. If included, would significantly alter model response.
- The two models should not be characterized as depicting the range of hydrologic response of an ESD stormwater management system.

Pulte Homes at Ten Mile Creek ESD design data & summary

- ESD planning techniques and practices are based on capturing and retaining enough rainfall to replicate runoff characteristics similar to "woods in good condition".
- The P_E target is a target rainfall amount used to determine storage requirements of the ESD system. The P_E target is determined for each study point and is based on soil characteristics and proposed impervious cover.
- Per Pulte Homes at Ten Mile Creek Preliminary Water Quality Plan
 - ✤ 73 study points were identified.
 - ✤ 614 ESD devices are proposed.
 - ✤ Provided P_E of 1.8";meeting MDE requirements.
 - ✤ Total volume provided = 680,000 ft³ or 15.6 Ac-ft.

MICRO BIO-RETENTION ASSUMPTIONS

- ✤ 6" Ponding
- Minimum sized depth of 2'
- Saturated Condition within soil media
- HSG reduced by one category
- Underdrains placed above stone reservoir and discharge to surface waters

- Saturated Condition excluded volume within soil media from the model
 Volume within soil media represents 60-75% of the facilities overall volume in
- Volume within soil media represents 60-75% of the facilities overall volution

RAINFALL DATA CLARKSBURG MONITORING STATION

would have been met only 1 time in 1586 rain events in the last 5 years.

stormwater runoff

MICRO-BIORETENTION ASSUMPTIONS

- ✤ 8" Ponding
- Minimum sized depth of 3'
- Maximum infiltration rate of 2"/hr and a minimum infiltration rate of .25"/hr with a decaying rate of 0.0015"/sec
- Constant infiltration rate of .025" /hr was used to represent the infiltration from the soil
- HSG reduced by one category
- Underdrains placed above stone reservoir and discharge to surface waters
- Ponding and media depth assumption have changed but it is still unclear as to overall volume assumption and whether the volume changed between the models
- Extremely low infiltration rate below system results in little to no groundwater infiltration within model response.

- Peak lowered due to the removal of saturated condition assumption.
- Total flow volume for LSTM 110 approximately same value under both models due to the assumption of an infiltration rate from soil media of .025"/hr; effectively providing no volume reduction via groundwater recharge
- Inclusion of volume reduction within the model would result in a hydrograph with a lower peak and narrower curve; similar to existing conditions/accepted post development (with ESD) hydrograph.

H&H ANALYSIS REVIEW CONCLUSIONS

- Model 1 assumptions represent an extreme condition and should not be considered as part of "an expected range of response" from an ESD system.
- Model 2 assumptions excludes one of the key benefits to an ESD system; which is volume reduction via groundwater infiltration.
 With this exclusion a representative range has not been presented.

Staff's Summary and Conclusions are Not Supported By Data

NewFields

Table 2. Summary of 1554 Master Flan Scenario Analysis						
	Watershed Indicator					
Subwatershed	Hydrology	Geomorphology (inferred from H&H Analysis)	Pollutant Loading	Natural Resource Disturbance (per Spatial Analysis)	OVERALL	
LSTM110	Significant	Significant	Low	Moderate	Significant	
LSTM111	Significant	Significant	N/A	Low to Moderate	Significant to	
LSTM112	Low	Low	N/A	Low	Low	
LSTM201	Low	Low	Low	Low to Moderate	Low to Moderate	
LSTM202	Moderate	Moderate	N/A	Low to Moderate	Moderate	
LSTM203	N/A	N/)	N/A	N/A	N/A	
LSTM204	N/A	NA	N/A	N/A	N/A	
LSTM206	Low to Moderate	Low to Moderate	Significant	Significant	Moderate	
LSTM302	Low	Low	Moderate to Significant	Low	Moderate	
LSTM303B	Moderate	Moderate	Low to Moderate	Low	Moderate	
LSTM304	Low to Moderate	low to Moderate	N/A	N/A	Low to Moderate	

Table 2. Summary of 1994 Master Plan Scenario Analysis

